caffe_shape.py 10.5 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
import numbers
from functools import reduce


def get_kernel_parameters(params):
    [k_h, k_w] = [1, 1]
    if isinstance(params.kernel_size, numbers.Number):
        [k_h, k_w] = [params.kernel_size] * 2
    elif len(params.kernel_size) > 0:
        k_h = params.kernel_h if params.kernel_h else params.kernel_size[0]
        k_w = params.kernel_w if params.kernel_w else params.kernel_size[
            len(params.kernel_size) - 1]
    [s_h, s_w] = [1, 1]
    if isinstance(params.stride, numbers.Number):
        [s_h, s_w] = [params.stride] * 2
    elif len(params.stride) > 0:
        s_h = params.stride_h if params.stride_h else params.stride[0]
        s_w = params.stride_w if params.stride_w else params.stride[
            len(params.stride) - 1]
    [p_h, p_w] = [0, 0]
    if isinstance(params.pad, numbers.Number):
        [p_h, p_w] = [params.pad] * 2
    elif len(params.pad) > 0:
        p_h = params.pad_h if params.pad_h else params.pad[0]
        p_w = params.pad_w if params.pad_w else params.pad[len(params.pad) - 1]
    dila_h = dila_w = 1
S
SunAhong1993 已提交
42
    if hasattr(params, 'dilation'):
43 44
        dila_len = len(params.dilation)
        if dila_len == 2:
S
SunAhong1993 已提交
45 46
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
47 48
        elif dila_len == 1:
            dila_h = dila_w = params.dilation[0]
S
SunAhong1993 已提交
49
        else:
50 51 52
            assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                dila_len)
    return dila_h, dila_w, p_h, p_w, k_h, k_w, s_h, s_w
S
SunAhong1993 已提交
53 54


55 56 57 58
def get_strided_kernel_output_shape(params, input_shape, round_func):
    i_h = input_shape[2]
    i_w = input_shape[3]
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_kernel_parameters(
S
SunAhong1993 已提交
59 60 61 62 63
        params)
    o_h = (i_h + 2 * pad_h - (dila_h *
                              (kernel_h - 1) + 1)) / float(stride_h) + 1
    o_w = (i_w + 2 * pad_w - (dila_w *
                              (kernel_w - 1) + 1)) / float(stride_w) + 1
64 65
    o_h = int(round_func(o_h))
    o_w = int(round_func(o_w))
S
SunAhong1993 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape[1]
    return [[input_shape[0], c, o_h, o_w]]


def shape_convolution(layer, input_shape):
    params = layer.convolution_param
    return get_strided_kernel_output_shape(params, input_shape[0], math.floor)


def shape_deconvolution(layer, input_shape):
    h_i = input_shape[2]
    w_i = input_shape[3]

    params = layer.convolution_param
    dila_h, dila_w, pad_h, pad_w, kernel_h, kernel_w, stride_h, stride_w = get_params_w_h(
        params)

    h_o = (h_i - 1) * stride_h - 2 * pad_h + dila_h * (kernel_h - 1) + 1
    w_o = (w_i - 1) * stride_w - 2 * pad_w + dila_w * (kernel_w - 1) + 1

    has_c_o = hasattr(params, 'num_output')
    c = params.num_output if has_c_o else input_shape.channels
    return [[input_shape[0][0], c, h_o, w_o]]


def shape_pooling(layer, input_shape):
    params = layer.pooling_param
    global_pool = getattr(params, 'global_pooling', False)
    if global_pool:
        return [[input_shape[0][0], input_shape[0][1], 1, 1]]

    ceil_mode = getattr(params, 'ceil_mode', True)
    if ceil_mode is True:
        method = math.ceil
    else:
        method = math.floor
    return get_strided_kernel_output_shape(params, input_shape[0], method)


def shape_innerproduct(layer, input_shape):
    params = layer.inner_product_param
    return [[input_shape[0][0], params.num_output]]


def shape_lrn(layer, input_shape):
    return input_shape


def shape_relu(layer, input_shape):
    return input_shape


def shape_softmax(layer, input_shape):
    return input_shape


def shape_input(layer, input_shape):
    return [list(layer.input_param.shape[0].dim)]
S
SunAhong1993 已提交
125

S
SunAhong1993 已提交
126

S
SunAhong1993 已提交
127 128 129 130 131 132
def shape_concat(layer, input_shape):
    params = layer.concat_param
    axis = params.axis
    output_shape = None
    for shape in input_shape:
        if output_shape is None:
133 134 135
            output_shape = []
            for i in range(len(shape)):
                output_shape.append(shape[i])
S
SunAhong1993 已提交
136 137
        else:
            output_shape[axis] += shape[axis]
S
SunAhong1993 已提交
138 139 140 141 142 143 144 145 146 147 148 149
    return [output_shape]


def shape_slice(layer, input_shape):
    inshape = input_shape[0]
    params = layer.slice_param
    axis = params.axis
    count = inshape[axis]
    points = list(params.slice_point)
    points = [0] + points + [count]
    output_shape = []
    for i in range(len(points)):
150 151 152
        shape = []
        for ii in range(len(inshape)):
            shape.append(inshape[ii])
S
SunAhong1993 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        size = points[i + 1] - points[i]
        shape[axis] = size
        output_shape.append(shape)
        if i == len(points) - 2:
            break
    return output_shape


def shape_prelu(layer, input_shape):
    return input_shape


def shape_sigmoid(layer, input_shape):
    return input_shape


def shape_absval(layer, input_shape):
    return input_shape


def shape_accuracy(layer, input_shape):
    return [[1]]


def shape_tanh(layer, input_shape):
    return input_shape


def shape_eltwise(layer, input_shape):
    return [input_shape[0]]


def shape_batchnorm(layer, input_shape):
    return input_shape


def shape_scale(layer, input_shape):
    return input_shape
S
SunAhong1993 已提交
191 192 193 194 195 196 197 198


def shape_reshape(layer, input_shape):
    def count(num_list):
        return reduce(lambda a, b: a * b, num_list)

    inshape = input_shape[0]
    params = layer.reshape_param
199 200
    axis = params.axis if hasattr(params, 'axis') else 0
    num_axes = params.num_axes if hasattr(params, 'num_axes') else -1
S
SunAhong1993 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    if inshape[0] == -1:
        inshape[0] = 1
    input_count = count(inshape)

    input_num_axes = len(inshape)

    input_start_axis = axis
    start_axis = input_start_axis if input_start_axis >= 0 \
            else input_num_axes + input_start_axis + 1

    assert start_axis >= 0, "[Reshape]axis %d out of range" % (input_start_axis)
    assert start_axis <= input_num_axes, "[Reshape]axis %d out of range for %d-D input data"\
            % (input_start_axis, input_num_axes)

    assert num_axes >= -1, "[Reshape]num_axes must be >= 0, or -1 for all"

    end_axis = input_num_axes if num_axes == -1 else start_axis + num_axes
    assert end_axis <= input_num_axes, "end_axis[%d] = axis[%d] + num_axes[%d] is out of range"\
            % (end_axis, start_axis, num_axes)

    num_axes_replaced = end_axis - start_axis
    num_axes_retained = input_num_axes - num_axes_replaced
223
    num_new_axes = len(list(params.shape.dim))
S
SunAhong1993 已提交
224 225 226 227 228 229
    outshape = []

    for i in range(start_axis):
        outshape.append(inshape[i])

    for i in range(num_new_axes):
230
        outshape.append(params.shape.dim[i])
S
SunAhong1993 已提交
231 232 233 234 235 236 237 238 239 240 241

    for i in range(end_axis, input_num_axes):
        outshape.append(inshape[i])

    assert len(outshape) == num_axes_retained + num_new_axes,\
            "[Reshape]invalid dims of output shape[%s]" % (str(outshape))

    inferred_axis = -1
    copy_axes = []
    constant_count = 1
    for i in range(num_new_axes):
242
        top_dim = params.shape.dim[i]
S
SunAhong1993 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        if top_dim == 0:
            copy_axes.append(i)
            copy_axis_index = start_axis + i
            outshape[copy_axis_index] = inshape[copy_axis_index]
        elif top_dim == -1:
            assert inferred_axis == -1, "[Reshape]new shape contains multiple -1 dims"
            inferred_axis = i
        else:
            constant_count *= top_dim

    if inferred_axis >= 0:
        explicit_count = constant_count
        l = inshape[0:start_axis]
        if len(l) > 0:
            explicit_count *= count(l)
        l = inshape[end_axis:]
        if len(l) > 0:
            explicit_count *= count(l)
        for i in range(len(copy_axes)):
            explicit_count *= outshape[start_axis + copy_axes[i]]
        assert input_count % explicit_count == 0, "[Reshape]botom count[%d] "\
                "must be divisible by product of the specified dimensions[%d] "\
                % (input_count, explicit_count)
266
        outshape[start_axis + inferred_axis] = int(input_count / explicit_count)
S
SunAhong1993 已提交
267 268 269 270

    output_count = count(outshape)
    assert output_count == input_count, "[Reshape]output count[%d] must match input count[%d]" % (
        output_count, input_count)
271
    outshape[0] = -1
S
SunAhong1993 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    return [outshape]


def shape_argmax(layer, input_shape):
    inshape = input_shape[0]
    params = layer.argmax_param
    out_max_val = params.out_max_val if hasattr(params, out_max_val) else False
    top_k = params.top_k if hasattr(params, top_k) else 1
    axis = parmas.axis if hasattr(params, axis) else -1
    if axis < 0:
        axis += len(inshape)
    assert (axis + 1 == len(inshape)
            ), 'only can be applied on the last dimension[axis:%d, %s] now,'\
                    'make sure you have set axis param in xxx.prototxt file' \
                    % (axis, str(inshape))

    outshape = inshape
    outshape[-1] = top_k
    if out_max_val is True:
        outshape[-1] *= 2
    return [outshape]


def shape_crop(layer, input_shape):
    assert len(input_shape) == 2, "the number of crop's inputs must be 2"
    return [input_shape[1]]


def shape_flatten(layer, input_shape):
    assert len(input_shape) == 1, "the number of flatten's inputs must be 1"
302
    inshape = input_shape[0]
S
SunAhong1993 已提交
303 304 305 306
    params = layer.flatten_param
    start_axis = params.axis
    end_axis = params.end_axis
    if start_axis < 0:
307
        start_axis += len(inshape)
S
SunAhong1993 已提交
308
    if end_axis < 0:
309
        end_axis += len(inshape) + 1
S
SunAhong1993 已提交
310 311
    assert start_axis <= end_axis, 'invalid axis[%d] or end_axis[%d] params'\
            % (start_axis, end_axis)
312 313 314 315 316 317
    output_shape = inshape[0:start_axis]
    if len(inshape[start_axis:end_axis]) != 0:
        flat_sz = reduce(lambda a, b: a * b, inshape[start_axis:end_axis])
        output_shape += [flat_sz]
    output_shape += inshape[end_axis:len(inshape)]
    output_shape[0] = -1
S
SunAhong1993 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
    return [output_shape]


def shape_power(layer, input_shape):
    return input_shape


def shape_reduction(layer, input_shape):
    params = layer.reduction_param
    axis = params.axis
    if axis < 0:
        axis += len(input_shape[0]) + 1
    assert axis <= len(input_shape[0]), 'invalid axis[%d] error' % (axis)
    return [input_shape[0:axis]]