opset.py 66.9 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16
from x2paddle.core.graph import GraphNode
C
channingss 已提交
17
from x2paddle.core.util import string
C
Channingss 已提交
18
from functools import reduce
C
update  
channingss 已提交
19
import numpy as np
C
channingss 已提交
20
import onnx
C
channingss 已提交
21
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
22
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
23
import logging as _logging
24
from collections import OrderedDict
C
channingss 已提交
25
import math
C
channingss 已提交
26
import os
S
SunAhong1993 已提交
27 28
import copy
import sys
C
channingss 已提交
29
import shutil
30

C
update  
channingss 已提交
31 32 33
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
34
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
35
    if 'Constant' in node.layer_type:
C
channingss 已提交
36
        return node.value
C
update  
channingss 已提交
37 38
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
39 40 41
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
42 43 44
    return None


C
Channingss 已提交
45 46 47 48 49 50
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
C
update  
Channingss 已提交
51
        if dim < -1:
C
Channingss 已提交
52 53 54 55 56 57 58
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True

59

C
Channingss 已提交
60
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
61 62 63 64 65 66 67
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
85
class OpSet9():
86
    elementwise_ops = {
S
SunAhong1993 已提交
87 88
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
fix  
SunAhong1993 已提交
89
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
90 91
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
R
root 已提交
92
    }
93

S
SunAhong1993 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
        'ReduceMean': ['paddle.mean',
                       dict(axes='axis', keepdims='keepdim'), 
                       dict(keepdims=1)],
        'ReduceSum': ['paddle.sum', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdims=1)],
        'ReduceMin': ['paddle.min', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdim=1)],
        'ReduceMax': ['paddle.max', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdim=1)],
S
for pad  
SunAhong1993 已提交
109 110 111
        'ReduceProd': ['paddle.prod', 
                      dict(axes='axis', keepdims='keepdim'), 
                      dict(keepdim=1)],
S
SunAhong1993 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        # active function
        'Relu': ['paddle.nn.functional.relu'],
        'LeakyRelu': ['paddle.nn.functional.leaky_relu', 
                      dict(alpha='negative_slope'), 
                      dict(negative_slope=.01)],
        'Elu': ['paddle.nn.functional.elu', 
                dict(alpha='alpha'), 
                dict(alpha=1.)],
        'ThresholdedRelu': ['paddle.nn.functional.thresholded_relu', 
                            dict(alpha='threshold'),
                            dict(alpha=1.)],
        'Tanh': ['paddle.nn.functional.tanh'],
        'Sigmoid': ['paddle.nn.functional.sigmoid'],
        'Softsign': ['paddle.nn.functional.softsign'],
        'Softplus': ['paddle.nn.functional.softplus', 
                     dict(threshold='threshold'), 
                     dict(threshold=float(sys.maxsize))],
        'Exp': ['paddle.exp'],
        'Softmax': ['paddle.nn.functional.softmax', 
                    dict(axis='axis'), 
                    dict(axis=1)],
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
137 138
    }

S
SunAhong1993 已提交
139
    def __init__(self, decoder, paddle_graph):
C
Channingss 已提交
140
        super(OpSet9, self).__init__()
141
        self.graph = decoder.graph
S
SunAhong1993 已提交
142 143 144 145
        self.paddle_graph = paddle_graph
        self.input_index = 0
        self.inputs_info = dict()
        self.params = dict()
R
root 已提交
146

147
    @print_mapping_info
S
SunAhong1993 已提交
148
    def directly_map(self, node, *args, **kwargs):
C
update  
channingss 已提交
149
        inputs = node.layer.input
S
SunAhong1993 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
        self.paddle_graph.add_layer(
            kernel=paddle_op,
            inputs={"x": input.name},
            outputs=[node.name],
            **layer_attrs)
            
173
    @print_mapping_info
174 175 176 177
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
178 179 180 181 182 183 184
        inputs_dict = {'x': val_x.name, 
                       'y': val_y.name}
        self.paddle_graph.add_layer(
            op_type, 
            inputs=inputs_dict, 
            outputs=[node.name])
        
185
    @print_mapping_info
C
update  
channingss 已提交
186
    def place_holder(self, node):
C
channings 已提交
187 188
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
189 190 191
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
192
                assert 'shape of input is not assigned'
S
SunAhong1993 已提交
193 194 195 196 197 198 199 200 201
        self.paddle_graph.add_layer(
            kernel="paddle.static.data",
            inputs={},
            outputs=[node.name],
            dtype=string(node.dtype),
            shape=shape,
            name=string(node.name))
        self.inputs_info["x{}".format(self.input_index)] = [shape, node.dtype]
        self.input_index += 1
C
update  
channingss 已提交
202

203
    @print_mapping_info
C
update  
channingss 已提交
204 205 206 207
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
208
        shape = node.out_shapes[0]
C
channingss 已提交
209
        if len(node.weight.shape) == 0:
S
SunAhong1993 已提交
210 211 212 213 214 215 216
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
217
        else:
S
SunAhong1993 已提交
218 219 220 221 222 223 224 225 226
            self.params[node.name] = node.weight
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
241
    def _interpolate(self, node):
C
channingss 已提交
242
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
243
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
244
        attrs = dict()
245
        if node.layer_type == 'Resize':
C
Channingss 已提交
246 247 248
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
fix  
SunAhong1993 已提交
249 250 251 252
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
253 254 255
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
S
fix  
SunAhong1993 已提交
256 257 258 259
                # TODO(syf): paddle.nn.functional.interpolate will support the length  
                # which is the same as the rank of input.
#                 inputs['scale_factor'] = val_scales.name
                attrs['scale_factor'] = self.params[val_scales.name].tolist()[2:]
C
Channingss 已提交
260 261 262
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
S
SunAhong1993 已提交
263 264 265 266 267 268 269 270 271 272 273 274
                var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_sizes.name},
                    outputs=[var_nc, var_hw],
                    num_or_sections=[2, 2],
                    axis=0)
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": var_hw},
                    outputs=[var_hw],
                    dtype=string('int32'))
S
SunAhong1993 已提交
275 276 277
                inputs['size'] = var_hw
                attrs = {"align_corners": False,
                         "mode": string(node.get_attr('mode', 'nearest'))}
S
SunAhong1993 已提交
278
                self.paddle_graph.add_layer(
S
docs  
SunAhong1993 已提交
279
                    kernel="paddle.nn.functional.interpolate",
S
SunAhong1993 已提交
280 281 282 283
                    inputs=inputs,
                    outputs=[node.name],
                    **attrs)
                return
284 285
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
286
            inputs['scale'] = val_scales
R
root 已提交
287

C
channingss 已提交
288
        mode = node.get_attr('mode', 'nearest')
S
fix  
SunAhong1993 已提交
289
        attrs.update({"align_corners": False,
S
SunAhong1993 已提交
290
                 "mode": string(mode),
S
fix  
SunAhong1993 已提交
291
                 "align_mode": 1})
S
SunAhong1993 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
            outputs=[node.name],
            **attrs)
        
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
            min=0.0,
            max=1.0)  
        
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
                'paddle.cast',
                inputs={"x": node.name},
                outputs=[node.name],
                dtype=string('int64'))   
R
root 已提交
328

329
    @print_mapping_info
C
channings 已提交
330 331 332
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
333 334 335

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
336 337
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
S
SunAhong1993 已提交
338
        layer_attrs = {
R
root 已提交
339 340 341 342 343
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
S
SunAhong1993 已提交
344
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
345
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
346 347 348 349
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
350 351

    @print_mapping_info
C
channings 已提交
352 353 354
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
355

C
channings 已提交
356 357
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
S
SunAhong1993 已提交
358
        layer_attrs = {
R
root 已提交
359 360 361 362
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
S
SunAhong1993 已提交
363
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
364
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
365 366 367 368
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
            **layer_attrs)
369 370

    @print_mapping_info
C
update  
channingss 已提交
371
    def Pad(self, node, op_independent=True):
C
channingss 已提交
372
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
373
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
374 375 376 377 378 379 380 381
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
C
update  
channingss 已提交
382 383
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
384 385
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
for pad  
SunAhong1993 已提交
386
        assume_pad = False
S
SunAhong1993 已提交
387 388
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
for pad  
SunAhong1993 已提交
389 390 391 392 393 394
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
        else:
            output_name = node.name
        layer_outputs = [output_name]
S
SunAhong1993 已提交
395 396
        if is_pads_attr:
            paddings = []
S
for pad  
SunAhong1993 已提交
397 398
            paddle_op = 'paddle.nn.functional.pad'
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
399
                if data_shape:
S
for pad  
SunAhong1993 已提交
400
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == len(pads) # NCHW
S
SunAhong1993 已提交
401
                if output_shape:
S
for pad  
SunAhong1993 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == len(pads)  # NCHW
                if assume_pad:
                    if len(pads) == 2:
                        data_format = "NCL"
                    elif len(pads) == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    layer_attrs['pad'] = paddings
                    layer_attrs['data_format'] = data_format
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                    if assume_pad:
                        paddings = np.array(pads).reshape(
                            (2, -1)).transpose().astype("int32").flatten().tolist()
                        layer_attrs['pad'] = paddings
                    else:
                        raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
427
            elif len(pads) == 8:
S
for pad  
SunAhong1993 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == len(pads) # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == len(pads)  # NCHW
                if assume_pad:
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['pad'] = paddings
                    else:
                        layer_attrs['pad'] = paddings
                        paddle_op = "custom_layer:pad_all_dim4_one_input"
S
SunAhong1993 已提交
442
            else:
S
for pad  
SunAhong1993 已提交
443 444 445 446 447 448 449
                 raise Exception("The padding value {} is wrong!".format(pads))
            self.paddle_graph.add_layer(
                paddle_op, 
                inputs={'x': val_x.name}, 
                outputs=layer_outputs, 
                **layer_attrs)
            if not op_independent:
S
SunAhong1993 已提交
450
                return node.name + '_paded'
C
update  
channingss 已提交
451
        else:
S
for pad  
SunAhong1993 已提交
452 453
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
454
                if data_shape:
S
for pad  
SunAhong1993 已提交
455
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2) == pads_len # NCHW
S
SunAhong1993 已提交
456
                if output_shape:
S
for pad  
SunAhong1993 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2) == pads_len  # NCHW 
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_with_two_input", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
                        assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                    if output_shape:
                        assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
                                "custom_layer:pad_all_dim2", 
                                inputs={'x': val_x.name, 'pad': val_pad.name}, 
                                outputs=layer_outputs, 
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
                    assume_pad |= data_shape and 2 * len(data_shape) == pads_len # NCHW
                if output_shape:
                    assume_pad |= output_shape and 2 * len(output_shape) == pads_len  # NCHW
                if assume_pad:
                    self.paddle_graph.add_layer(
                        "custom_layer:pad_all_dim4", 
                        inputs={'x': val_x.name, 'pad': val_pad.name}, 
                        outputs=layer_outputs, 
                        value=value,
                        mode=string(mode))
            else:
                print(pads_len)
                raise Exception("The padding value is wrong!")   
S
SunAhong1993 已提交
502 503
            if not op_independent:
                return node.name + '_paded'
C
update  
channingss 已提交
504

505
    @print_mapping_info
C
update  
channingss 已提交
506
    def Unsqueeze(self, node):
C
channingss 已提交
507
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
508
        axes = node.get_attr('axes')
S
SunAhong1993 已提交
509
        layer_attrs = {'axis': axes}
R
root 已提交
510
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
511 512 513 514 515 516
            if node.name:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    shape=[1])
517
        else:
S
SunAhong1993 已提交
518 519 520 521 522
            self.paddle_graph.add_layer(
                'paddle.unsqueeze', 
                inputs={"x": val_x.name}, 
                outputs=[node.name],
                **layer_attrs)
523

524
    @print_mapping_info
C
channingss 已提交
525
    def Shrink(self, node):
C
channingss 已提交
526
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
527 528 529
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
S
SunAhong1993 已提交
530 531 532 533 534
        self.paddle_graph.add_layer(
            'paddle.nn.functional.hardshrink', 
            inputs={"x": val_x.name}, 
            outputs=[node.name], 
            threshold=lambd)
C
channingss 已提交
535

536
    @print_mapping_info
C
update  
channingss 已提交
537 538 539 540 541 542 543 544
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
545

C
update  
channingss 已提交
546
        shape = node.get_attr('shape', None)
R
root 已提交
547

C
update  
channingss 已提交
548
        if shape is None:
C
channingss 已提交
549
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
550 551
        if shape is None:
            shape = list(value.shape)
552 553 554
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
555
                            val_output.name, val_output.name)
556
        if len(value) == 1:
C
channingss 已提交
557
            value = value.tolist()
C
update  
channingss 已提交
558
            value = value[0]
S
SunAhong1993 已提交
559 560 561 562 563 564 565
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
C
channingss 已提交
566 567
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
568 569 570 571 572 573 574 575 576
            self.params[node.name] = value
            self.paddle_graph.add_layer(
                kernel="paddle.static.create_parameter",
                inputs={},
                outputs=[node.name],
                dtype=string(dtype),
                shape=shape,
                name=string(node.name),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
C
update  
channingss 已提交
577

578
    @print_mapping_info
C
update  
channingss 已提交
579
    def Resize(self, node):
580 581
        self._interpolate(node)

582
    @print_mapping_info
583 584 585
    def Upsample(self, node):
        self._interpolate(node)

586 587 588 589 590 591
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
S
SunAhong1993 已提交
592
        layer_attrs = {
S
fix  
SunAhong1993 已提交
593
            'eps': epsilon,
594
        }
S
SunAhong1993 已提交
595 596
        dim = len(val_x.out_shapes[0])
        if dim ==2 :
S
fix  
SunAhong1993 已提交
597
            layer_attrs["data_format"] = string("NC")
S
SunAhong1993 已提交
598
        elif dim == 3:
S
fix  
SunAhong1993 已提交
599
            layer_attrs["data_format"] = string("NCL")
S
SunAhong1993 已提交
600
        elif dim == 4:
S
fix  
SunAhong1993 已提交
601
            layer_attrs["data_format"] = string("NCHW")
S
SunAhong1993 已提交
602
        elif dim == 5:
S
fix  
SunAhong1993 已提交
603
            layer_attrs["data_format"] = string("NCDHW")
S
SunAhong1993 已提交
604 605 606
        else:
            raise Exception("The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization.")
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
607
            "paddle.nn.functional.instance_norm", 
S
SunAhong1993 已提交
608 609 610
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name}, 
S
fix  
SunAhong1993 已提交
611
            outputs=[node.name], 
S
SunAhong1993 已提交
612
            **layer_attrs)
613 614

    @print_mapping_info
615
    def Expand(self, node):
C
channingss 已提交
616
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
617
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
618
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
619
        name_ones = node.name + '_ones'
C
Channingss 已提交
620
        attr_ones = {
S
SunAhong1993 已提交
621
            'shape': val_shape.name,
C
Channingss 已提交
622
            'dtype': string(val_x_dtype),
S
SunAhong1993 已提交
623
            'fill_value': 1
C
Channingss 已提交
624
        }
S
SunAhong1993 已提交
625 626 627 628 629 630 631 632 633 634 635
        self.paddle_graph.add_layer(
            'paddle.full',
            inputs={},
            outputs=[name_ones],
            **attr_ones)
        inputs_dict = {'x': name_ones, 
                       'y': val_x.name}
        self.paddle_graph.add_layer(
            'paddle.multiply',
            inputs=inputs_dict,
            outputs=[node.name])
C
update  
channingss 已提交
636

637
    @print_mapping_info
C
channingss 已提交
638 639 640 641
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
642
        axis = node.get_attr('axis', 0)
643 644
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
645
        if axis == 0 and len(indices_shape) <= 1:
C
Channingss 已提交
646
            if len(val_x.out_shapes[0]) <= 1:
S
SunAhong1993 已提交
647 648 649 650 651
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
C
Channingss 已提交
652 653
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
654 655 656 657 658 659 660 661 662 663 664
                    gather_ = node.name + '_1'
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
                        outputs=[node.name],
                        axis=[0])
C
Channingss 已提交
665
                else:
S
SunAhong1993 已提交
666 667 668 669 670
                    self.paddle_graph.add_layer(
                        'paddle.gather',
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
C
channingss 已提交
671 672
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
673
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
            name_trans = val_x.name + '_trans'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices.name},
                outputs=[node.name])
            self.paddle_graph.add_layer(
                'paddle.transpose', 
                inputs={"x": node.name}, 
                outputs=[node.name], 
                perm=perm)
C
Channingss 已提交
690
            if len(indices_shape) < 1:
S
SunAhong1993 已提交
691 692 693 694 695
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
                    inputs={'x': node.name},
                    outputs=[node.name],
                    axis=[axis])
696 697 698
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
699 700 701 702
                indices_cast = indices.name + '_cast'
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
703
                    outputs=[indices_cast],
S
SunAhong1993 已提交
704 705
                    dtype=string('int64'))
                self.paddle_graph.add_layer(
S
for pad  
SunAhong1993 已提交
706 707 708 709
                    'paddle.nn.functional.embedding',
                    inputs={"x": indices_cast,
                            "weight": val_x.name},
                    outputs=[node.name])
710 711 712
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
713 714 715 716 717 718
                indices_reshape = indices.name + '_shape'
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": indices.name},
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])
719 720

                perm = list(range(len(val_x.out_shapes[0])))
S
SunAhong1993 已提交
721 722 723
                self.paddle_graph.add_layer(
                    'paddle.gather',
                    inputs={'x': val_x.name,
724
                            'index': indices_reshape},
S
SunAhong1993 已提交
725
                    outputs=[node.name])
726 727 728 729 730 731
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
S
SunAhong1993 已提交
732 733 734 735 736
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={"x": node.name},
                    outputs=[node.name],
                    shape=reshaped_shape)
737
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
738
            from functools import reduce
R
root 已提交
739
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
740 741 742 743 744 745
            indices_reshape = indices.name + '_shape'
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices_reshape],
                shape=[reshape_shape, ])
R
root 已提交
746

C
Channingss 已提交
747 748
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
749 750 751 752 753 754 755 756 757
            name_trans = val_x.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": val_x.name},
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
758
                        'index': indices_reshape},
S
SunAhong1993 已提交
759 760 761 762 763 764 765
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[input_transpose],
                perm=perm)
C
Channingss 已提交
766 767 768 769 770 771
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
S
SunAhong1993 已提交
772 773 774 775 776
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
                outputs=[node.name],
                shape=reshaped_shape)
777

C
Channingss 已提交
778 779 780 781 782 783
    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
S
SunAhong1993 已提交
784 785 786 787 788 789
            self.paddle_graph.add_layer(
                'paddle.scatter',
                inputs={'x': val_x.name,
                        'index': indices.name,
                        'updates': updates.name},
                outputs=[node.name])
C
Channingss 已提交
790
        else:
S
SunAhong1993 已提交
791
            input_inner_indices = node.name + '_input_inner_indices'
792
            shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": indices.name},
                outputs=[indices.name],
                shape=indices.out_shapes[0])

            zeros_like_val_x = val_x.name + '_zeros'
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
                inputs={"x": val_x.name},
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
806
                inputs={
S
SunAhong1993 已提交
807 808 809
                    'x': zeros_like_val_x,
                    'index': indices.name,
                    'updates': updates.name
C
Channingss 已提交
810
                },
S
SunAhong1993 已提交
811 812 813
                outputs=[input_inner_indices])
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
814
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
815 816 817 818 819 820 821 822
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": updates.name},
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
C
Channingss 已提交
823
                inputs={
S
SunAhong1993 已提交
824 825
                    'x': zeros_like_val_x,
                    'index': indices.name,
C
Channingss 已提交
826 827
                    'updates': constant_minus_one
                },
S
SunAhong1993 已提交
828 829
                outputs=[indices_mask])
            constant_one = node.name + '_constant_1'
830
            # full_like support create tensor shape like input tensor
S
SunAhong1993 已提交
831 832 833 834 835 836 837 838 839
            self.paddle_graph.add_layer(
                'paddle.full_like',
                inputs={"x": val_x.name},
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
            input_out_indices_mask = node.name + '_input_out_indices_mask'
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
840
                inputs={"x": indices_mask,
841
                        "y": constant_one},
S
SunAhong1993 已提交
842
                outputs=[input_out_indices_mask])
C
Channingss 已提交
843

S
SunAhong1993 已提交
844 845 846 847
            input_out_indices = node.name + '_input_out_indices'
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs={"x": val_x.name,
C
Channingss 已提交
848
                        "y": input_out_indices_mask},
S
SunAhong1993 已提交
849
                outputs=[input_out_indices])
C
Channingss 已提交
850

S
SunAhong1993 已提交
851 852
            self.paddle_graph.add_layer(
                "paddle.add",
C
Channingss 已提交
853 854
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
855
                outputs=[node.name])
C
Channingss 已提交
856

857 858 859 860 861 862
    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
S
SunAhong1993 已提交
863 864 865 866 867
        inputs = {'start': val_start.name, 
                  'end': val_limit.name, 
                  'step': val_delta.name}
        self.paddle_graph.add_layer(
            'paddle.arange',
868
            inputs=inputs,
S
SunAhong1993 已提交
869 870
            outputs=[node.name],
            dtype=string(dtype))
871 872

    @print_mapping_info
C
channingss 已提交
873
    def Slice(self, node):
C
channingss 已提交
874
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
875
        starts, ends, axes, steps = None, None, None, None
S
SunAhong1993 已提交
876
        layer_attrs = {}
C
channingss 已提交
877 878 879
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
C
Channingss 已提交
880
            starts_value = _const_weight_or_none(starts)
S
for pad  
SunAhong1993 已提交
881 882
            if starts_value is not None:
                starts_value = starts_value.tolist()
C
Channingss 已提交
883
            ends_value = _const_weight_or_none(ends)
S
for pad  
SunAhong1993 已提交
884 885 886 887 888
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
R
root 已提交
889
            if len(node.inputs) > 3:
S
for pad  
SunAhong1993 已提交
890 891
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
R
root 已提交
892
            if len(node.inputs) > 4:
C
channings 已提交
893
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
for pad  
SunAhong1993 已提交
894 895
                steps = _const_weight_or_none(steps).tolist()
            
S
SunAhong1993 已提交
896
            layer_attrs = {
897
                "axes": axes,
S
SunAhong1993 已提交
898 899
                "starts": starts.name,
                "ends": ends.name
900
            }
S
SunAhong1993 已提交
901
            if starts_value is not None and ends_value is not None and axes is not None:
C
Channingss 已提交
902
                starts_value = starts_value.copy()
903
                ends_value = ends_value.copy()
904 905 906 907
                #for idx in range(len(ends_value)):
                #    if ends_value[idx] > 2**31 - 1:
                #        ends_value[idx] = 2**31 - 1
                #print(val_x.out_shapes)
908
                for idx in range(len(ends_value)):
909 910
                    if starts_value[idx] >= val_x.out_shapes[0][axes[idx]]:
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
911
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
912
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
C
Channingss 已提交
913
                    elif ends_value[idx] > 2**31 - 1:
914
                        ends_value[idx] = 2**31 - 1
S
SunAhong1993 已提交
915
                layer_attrs = {
916 917 918 919 920 921
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
922 923 924 925 926 927 928
                    starts_cast = starts.name + '_cast'
                    self.paddle_graph.add_layer(
                        'paddle.cast',
                        inputs={"x": starts.name},
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
929
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
930
                    ends_cast = ends.name + '_cast'
S
for pad  
SunAhong1993 已提交
931 932
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
933 934 935 936 937 938
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={"x": ends.name},
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
C
channingss 已提交
939 940 941 942
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
943 944 945
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
S
SunAhong1993 已提交
946
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
947

S
for pad  
SunAhong1993 已提交
948

C
Channingss 已提交
949
        if steps is not None:
S
SunAhong1993 已提交
950 951 952 953 954 955
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
                'paddle.strided_slice', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
956
        else:
S
SunAhong1993 已提交
957 958 959 960 961
            self.paddle_graph.add_layer(
                'paddle.slice', 
                inputs={"input": val_x.name}, 
                outputs=[node.name],  
                **layer_attrs)
C
channingss 已提交
962

963
    @print_mapping_info
C
update  
channingss 已提交
964
    def ConstantOfShape(self, node):
C
channingss 已提交
965
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
966
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
967 968 969 970

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
971 972
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
973 974
        if len(value) == 1:
            value = value[0]
S
SunAhong1993 已提交
975 976
            layer_attrs = {
                'shape': val_shape.name,
977
                'dtype': string(dtype),
S
SunAhong1993 已提交
978
                'fill_value': value
979
            }
S
SunAhong1993 已提交
980 981 982 983 984
            self.paddle_graph.add_layer(
                "paddle.full", 
                inputs={}, 
                outputs=[node.name],
                **layer_attrs)
C
update  
channingss 已提交
985

C
Channingss 已提交
986 987 988 989 990 991 992 993
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
S
SunAhong1993 已提交
994
            layer_attrs = {
C
Channingss 已提交
995 996 997
                'max': max_value,
                'min': min_value,
            }
S
SunAhong1993 已提交
998 999 1000 1001 1002
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1003
        else:
S
fix  
SunAhong1993 已提交
1004 1005
            min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
            max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
S
SunAhong1993 已提交
1006
            min_value = _const_weight_or_none(min_ipt)
S
fix  
SunAhong1993 已提交
1007
            max_value = _const_weight_or_none(max_ipt)
1008
            if max_value.shape == (1, ):
C
Channingss 已提交
1009
                max_value = max_value[0]
1010
            if min_value.shape == (1, ):
C
Channingss 已提交
1011 1012
                min_value = min_value[0]
        if max_value is not None and min_value is not None:
S
SunAhong1993 已提交
1013 1014 1015 1016 1017 1018
            layer_attrs = {'max': max_value, 'min': min_value}
            self.paddle_graph.add_layer(
                'paddle.clip', 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                **layer_attrs)
C
Channingss 已提交
1019 1020 1021
        else:
            raise

1022
    @print_mapping_info
C
update  
channingss 已提交
1023
    def Split(self, node):
C
channingss 已提交
1024
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1025
        paddle_op = 'split'
C
channingss 已提交
1026
        split = node.get_attr('split')
C
update  
channingss 已提交
1027
        axis = node.get_attr('axis', 0)
S
SunAhong1993 已提交
1028
        layer_attrs = {
C
channingss 已提交
1029
            'num_or_sections': split,
S
SunAhong1993 已提交
1030
            'axis': axis,
C
channingss 已提交
1031
        }
S
SunAhong1993 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        outputs_list = list()
        if isinstance(split, list) or isinstance(split, tuple):
            for i in range(len(split)):
                outputs_list.append("{}_p{}".format(node.layer_name, i))
        else:
            outputs_list.append(node.name)
        self.paddle_graph.add_layer(
            'paddle.split', 
            inputs={"x": val_x.name}, 
            outputs=outputs_list, 
            **layer_attrs)
C
update  
channingss 已提交
1043

1044
    @print_mapping_info
C
update  
channingss 已提交
1045
    def Reshape(self, node):
C
channingss 已提交
1046 1047
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1048
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
1049 1050 1051 1052
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
S
SunAhong1993 已提交
1053 1054 1055 1056 1057
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=shape_value.tolist())
C
Channingss 已提交
1058 1059
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
S
SunAhong1993 已提交
1060 1061 1062 1063 1064
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name},
                outputs=[node.name],
                shape=node.out_shapes[0])
1065
        else:
1066 1067
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
S
SunAhong1993 已提交
1068 1069 1070 1071 1072
                self.paddle_graph.add_layer(
                    'paddle.reshape',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    shape=val_shape.out_shapes[0])
S
for pad  
SunAhong1993 已提交
1073 1074 1075 1076 1077 1078
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1079 1080 1081 1082
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1083
                outputs=[node.name])
1084 1085

    @print_mapping_info
C
update  
channingss 已提交
1086
    def Cast(self, node):
C
channingss 已提交
1087
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
S
SunAhong1993 已提交
1097 1098 1099 1100 1101
        self.paddle_graph.add_layer(
            'paddle.cast', 
            inputs={'x': val_input.name}, 
            outputs=[node.name], 
            dtype=string(dtype))
C
update  
channingss 已提交
1102

C
Channingss 已提交
1103 1104 1105
    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1106 1107 1108
        self.paddle_graph.add_layer('paddle.logical_not', 
                                    inputs={'x': val_input.name}, 
                                    outputs=[node.name])
C
Channingss 已提交
1109

1110
    @print_mapping_info
C
update  
channingss 已提交
1111
    def AveragePool(self, node):
C
channingss 已提交
1112
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1113 1114

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1115 1116 1117 1118 1119 1120
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
C
channingss 已提交
1121

C
channingss 已提交
1122 1123
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1124
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1125
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1126 1127 1128 1129 1130
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1131

S
SunAhong1993 已提交
1132 1133
        paddle_op = 'paddle.nn.functional.avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only avg_pool1d, avg_pool2d and avg_pool3d are supported'
S
SunAhong1993 已提交
1134
        layer_attrs = {
S
SunAhong1993 已提交
1135 1136 1137
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1138
            "ceil_mode": ceil_mode,
S
SunAhong1993 已提交
1139
            "exclusive": True,
S
SunAhong1993 已提交
1140
            "name": string(node.name)
C
update  
channingss 已提交
1141
        }
S
SunAhong1993 已提交
1142 1143
        self.paddle_graph.add_layer(
            paddle_op, 
S
SunAhong1993 已提交
1144
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
S
SunAhong1993 已提交
1145 1146
            outputs=[node.name], 
            **layer_attrs)
C
update  
channingss 已提交
1147

1148
    @print_mapping_info
C
update  
channingss 已提交
1149
    def Concat(self, node):
S
SunAhong1993 已提交
1150
        inputs_list = []
C
Channingss 已提交
1151
        dtypes = set()
C
update  
channingss 已提交
1152
        for i in range(len(node.layer.input)):
C
channingss 已提交
1153
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1154 1155
            inputs_list.append(ipt.name)
            dtypes.add(ipt.dtype)
C
Channingss 已提交
1156 1157
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
C
update  
channingss 已提交
1158
        axis = node.get_attr('axis')
S
SunAhong1993 已提交
1159 1160 1161 1162 1163
        self.paddle_graph.add_layer(
            'paddle.concat', 
            inputs={"x": inputs_list}, 
            outputs=[node.name], 
            axis=axis)
C
update  
channingss 已提交
1164

1165
    @print_mapping_info
C
update  
channingss 已提交
1166
    def Flatten(self, node):
C
channingss 已提交
1167
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1168
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
1169
        axis = node.get_attr('axis', 1)
S
SunAhong1993 已提交
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
            'paddle.reshape', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
            shape=shape_list)
C
update  
channingss 已提交
1184

1185
    @print_mapping_info
C
update  
channingss 已提交
1186
    def Gemm(self, node):
C
channingss 已提交
1187 1188 1189
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1190 1191 1192 1193 1194

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1195 1196 1197
        val_mm = node.name + '_mm'
        matmul_inputs = {"x": val_a.name, 
                         "y": val_b.name}
C
update  
channingss 已提交
1198 1199 1200 1201
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
S
SunAhong1993 已提交
1202 1203
        self.paddle_graph.add_layer(
            'paddle.matmul',
1204
            inputs=matmul_inputs,
S
SunAhong1993 已提交
1205 1206 1207 1208 1209 1210 1211
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
            "paddle.scale", 
            inputs={"x": val_mm}, 
            outputs=[val_mm],
            scale=alpha)
C
channingss 已提交
1212

C
update  
channingss 已提交
1213 1214
        if beta != 0:
            if beta == 1.:
S
SunAhong1993 已提交
1215 1216 1217 1218
                add_inputs = {"x": val_mm, 
                              "y": val_c.name}
                self.paddle_graph.add_layer(
                    "paddle.add",
1219
                    inputs=add_inputs,
S
SunAhong1993 已提交
1220
                    outputs=[node.name])
C
update  
channingss 已提交
1221
            else:
S
SunAhong1993 已提交
1222 1223 1224 1225 1226 1227
                var_beta = node.name + '_beta'
                self.paddle_graph.add_layer(
                    "paddle.scale",
                    inputs={"x": val_c.name},
                    outputs=[var_beta],
                    scale=beta)
C
channingss 已提交
1228
                add_inputs = {"x": val_mm, "y": var_beta}
S
SunAhong1993 已提交
1229 1230
                self.paddle_graph.add_layer(
                    "paddle.add",
1231
                    inputs=add_inputs,
S
SunAhong1993 已提交
1232
                    outputs=[node.name])
C
update  
channingss 已提交
1233

1234
    @print_mapping_info
C
update  
channingss 已提交
1235
    def Sum(self, node):
1236
        val_inps = node.layer.input
S
SunAhong1993 已提交
1237
        inputs_dict = {
1238
            "x": self.graph.get_input_node(
S
SunAhong1993 已提交
1239
                node, idx=0, copy=True).name,
1240
            "y": self.graph.get_input_node(
S
SunAhong1993 已提交
1241
                node, idx=1, copy=True).name,
1242
        }
S
SunAhong1993 已提交
1243 1244 1245
        self.paddle_graph.add_layer("paddle.add", 
                                    inputs=inputs_dict, 
                                    outputs=[node.name])
1246

C
channingss 已提交
1247 1248
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
S
SunAhong1993 已提交
1249 1250 1251
            inputs_dict = {
                "x": node.name,
                "y": y.name,
1252
            }
S
SunAhong1993 已提交
1253 1254 1255 1256
            self.paddle_graph.add_layer(
                "paddle.add", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
update  
channingss 已提交
1257

1258
    @print_mapping_info
C
update  
channingss 已提交
1259
    def MatMul(self, node):
C
channingss 已提交
1260 1261
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
1262 1263
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
S
SunAhong1993 已提交
1264 1265
        inputs_dict = {"x": val_x.name, 
                       "y": val_y.name}
C
Channingss 已提交
1266
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
            y_squeeze = val_y.name + '_squeeze'
            self.paddle_graph.add_layer(
                "paddle.squeeze",
                inputs={"x": val_y.name},
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
C
Channingss 已提交
1278
        else:
S
SunAhong1993 已提交
1279 1280 1281 1282 1283
            self.paddle_graph.add_layer(
                "paddle.matmul", 
                inputs=inputs_dict, 
                outputs=[node.name])
            
1284
    @print_mapping_info
C
update  
channingss 已提交
1285
    def BatchNormalization(self, node):
C
channingss 已提交
1286 1287 1288 1289 1290
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1291 1292 1293 1294

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1295 1296
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
S
SunAhong1993 已提交
1297
        layer_attrs = {
C
update  
channingss 已提交
1298 1299 1300
            "momentum": momentum,
            "epsilon": epsilon,
        }
S
SunAhong1993 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
        self.paddle_graph.add_layer(
            "paddle.nn.functional.batch_norm", 
            inputs={"x": val_x.name,
                    "weight": val_scale.name,
                    "bias": val_b.name,
                    "running_mean": val_mean.name,
                    "running_var": val_var.name}, 
            outputs=[node.name], 
            **layer_attrs)
        
1311
    @print_mapping_info
C
update  
channingss 已提交
1312
    def Transpose(self, node):
C
channingss 已提交
1313
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1314 1315 1316 1317
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1318 1319 1320 1321 1322
        self.paddle_graph.add_layer(
            "paddle.transpose", 
            inputs={"x": val_x.name},
            outputs=[node.name], 
            perm=perm)
C
update  
channingss 已提交
1323

1324
    @print_mapping_info
C
update  
channingss 已提交
1325
    def PRelu(self, node):
S
SunAhong1993 已提交
1326 1327 1328
        op_name = name_generator("prelu", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
C
channingss 已提交
1329 1330
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1331

C
channingss 已提交
1332 1333
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
C
Channingss 已提交
1334
        if shape_slope == [1]:
C
channingss 已提交
1335 1336
            mode = 'all'
        elif len(shape_slope) > 2:
S
SunAhong1993 已提交
1337
            raise Exception("The 'element' mode is not supported yet!")
C
Channingss 已提交
1338 1339 1340 1341 1342

        if mode == 'channel' and len(shape_slope) == 1:
            # paddle params shape need be [1, channel]
            slope_data = _const_weight_or_none(val_slope)
            slope_data = np.reshape(slope_data, [1] + shape_slope)
S
SunAhong1993 已提交
1343 1344 1345 1346 1347 1348 1349
            self.params[val_slope.name] = slope_data
  
        self.paddle_graph.add_layer(
            "paddle.nn.functional.prelu", 
            inputs={"x": val_x.name,
                    "weight": val_slope.name}, 
            outputs=[node.name])
C
update  
channingss 已提交
1350

1351
    @print_mapping_info
C
update  
channingss 已提交
1352
    def Squeeze(self, node):
C
channingss 已提交
1353 1354
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
1355
        if len(val_x.out_shapes[0]) == 1:
S
SunAhong1993 已提交
1356 1357 1358 1359 1360
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_x.name},
                outputs=[node.name],
                dtype=string(val_x.dtype))
1361
        else:
S
SunAhong1993 已提交
1362 1363 1364 1365 1366
            self.paddle_graph.add_layer(
                "paddle.squeeze", 
                inputs={"x": val_x.name}, 
                outputs=[node.name], 
                axis=axes)
R
root 已提交
1367

1368
    @print_mapping_info
C
channings 已提交
1369 1370 1371
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1372 1373 1374 1375 1376
        self.paddle_graph.add_layer(
            "paddle.equal",
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
1377

C
Channingss 已提交
1378 1379 1380 1381
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1382 1383 1384 1385 1386
        self.paddle_graph.add_layer(
            "paddle.greater_than",
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=node,
C
Channingss 已提交
1387 1388
            param_attr=None)

1389
    @print_mapping_info
C
channings 已提交
1390 1391 1392 1393
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1394

S
SunAhong1993 已提交
1395 1396 1397 1398 1399
        not_condition = condition.name + '_not'
        self.paddle_graph.add_layer(
            "paddle.logical_not",
            inputs={"x": condition.name},
            outputs=[not_condition])
R
root 已提交
1400
        cast_not_condition = not_condition + '_cast'
S
SunAhong1993 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
        cast_condition = condition.name + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": condition.name},
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
        mul_val_x = val_x.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_x.name,
1416
                    'y': cast_condition},
S
SunAhong1993 已提交
1417 1418 1419 1420 1421
            outputs=[mul_val_x])
        mul_val_y = val_y.name + '_mul'
        self.paddle_graph.add_layer(
            "paddle.multiply",
            inputs={'x': val_y.name,
1422
                    'y': cast_not_condition},
S
SunAhong1993 已提交
1423
            outputs=[mul_val_y])
1424

S
SunAhong1993 已提交
1425 1426
        self.paddle_graph.add_layer(
            "paddle.add",
1427 1428
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1429
            outputs=[node.name])
1430 1431

    @print_mapping_info
R
root 已提交
1432 1433
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1434 1435
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
S
SunAhong1993 已提交
1436 1437 1438 1439 1440 1441 1442 1443 1444
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.transpose",
                inputs={"x": val_x.name},
                outputs=[node.layer_naem],
                perm=[1, 0])
1445
        if val_x_dim > 1:
S
SunAhong1993 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
            self.paddle_graph.add_layer(
                "paddle.nonzero", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name])
            self.paddle_graph.add_layer(
                "paddle.split",
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
                "paddle.concat", 
                inputs={"x": val_x.name}, 
                outputs=[node.name])
1460 1461

    @print_mapping_info
C
update  
channingss 已提交
1462
    def Identity(self, node):
C
channingss 已提交
1463
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1464 1465 1466 1467 1468
        self.paddle_graph.add_layer(
            "paddle.assign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
        
1469
    @print_mapping_info
C
channings 已提交
1470 1471 1472 1473
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1474

1475
        if repeats is None:
S
SunAhong1993 已提交
1476
            repeats = val_repeats.name
J
jiangjiajun 已提交
1477
            if val_repeats.dtype != 'int32':
S
SunAhong1993 已提交
1478 1479 1480 1481 1482
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
                    outputs=["{}.tmp".format(repeats)],
                    dtype=string("int32"))
J
jiangjiajun 已提交
1483 1484
                repeats = "{}.tmp".format(repeats)

1485
        elif isinstance(repeats, int):
C
channings 已提交
1486
            repeats = [repeats]
R
root 已提交
1487

C
channings 已提交
1488
        attr = {
R
root 已提交
1489
            'expand_times': repeats,
S
SunAhong1993 已提交
1490
            "name": string(node.name),
C
channings 已提交
1491
        }
S
SunAhong1993 已提交
1492 1493 1494 1495 1496
        self.paddle_graph.add_layer(
            "paddle.tile", 
            inputs={"x": val_x.name}, 
                    outputs=[node.name], 
                    repeat_times=repeats)
R
root 已提交
1497

1498
    @print_mapping_info
C
update  
channingss 已提交
1499
    def MaxPool(self, node):
C
channingss 已提交
1500
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1501
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
S
SunAhong1993 已提交
1511 1512
        paddle_op = 'paddle.nn.functional.max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only max_pool1d, max_pool2d and max_pool3d are supported'
C
channingss 已提交
1513

C
channingss 已提交
1514 1515
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1516
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1517
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1518 1519 1520 1521 1522
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
S
SunAhong1993 已提交
1523 1524 1525 1526 1527
            
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
C
update  
channingss 已提交
1528 1529
            "ceil_mode": ceil_mode,
        }
S
SunAhong1993 已提交
1530 1531 1532 1533 1534
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name}, 
            outputs=[node.name], 
            **layer_attrs)
R
root 已提交
1535

1536
    @print_mapping_info
C
channings 已提交
1537
    def GlobalMaxPool(self, node):
S
SunAhong1993 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_max_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only adaptive_max_pool1d, adaptive_max_pool2d and adaptive_max_pool3d are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
        
1555
    @print_mapping_info
C
channings 已提交
1556
    def GlobalAveragePool(self, node):
S
SunAhong1993 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.functional.adaptive_avg_pool{}d'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs={'x': val_x.name}, 
            outputs=[node.name], 
            output_size=output_shape[2:])
R
root 已提交
1573

1574
    @print_mapping_info
C
update  
channingss 已提交
1575
    def Conv(self, node):
C
channingss 已提交
1576 1577
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1578 1579
        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1580
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1581 1582
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1583
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1584 1585
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1586
        num_out_channels = val_w.out_shapes[0][0]
S
SunAhong1993 已提交
1587 1588
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.functional.conv{}d'.format(convnd)
C
update  
channingss 已提交
1589 1590

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1591 1592 1593
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1594

C
channingss 已提交
1595
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1596 1597
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1598
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1599 1600 1601 1602 1603
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1604

S
SunAhong1993 已提交
1605
        layer_attrs = {
C
update  
channingss 已提交
1606 1607 1608 1609
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
S
SunAhong1993 已提交
1610 1611 1612 1613
        }
        layer_inputs = {
            "x": val_x.name,
            "weight": val_w.name
C
update  
channingss 已提交
1614 1615
        }
        if has_bias:
S
SunAhong1993 已提交
1616 1617 1618 1619 1620 1621
            layer_inputs["bias"] = val_b.name
        self.paddle_graph.add_layer(
            paddle_op, 
            inputs=layer_inputs, 
            outputs=[node.name], 
            **layer_attrs)
C
channingss 已提交
1622

1623
    @print_mapping_info
C
channingss 已提交
1624
    def ConvTranspose(self, node):
C
channingss 已提交
1625 1626
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1627
        val_b = None
R
root 已提交
1628
        if len(node.layer.input) > 2:
C
channingss 已提交
1629
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
channingss 已提交
1630 1631
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1632
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1633 1634 1635
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
S
SunAhong1993 已提交
1636
        num_in_channels = val_w.out_shapes[0][0]
C
channingss 已提交
1637
        num_out_channels = val_w.out_shapes[0][1]
S
SunAhong1993 已提交
1638
        paddle_op = 'paddle.nn.functional.conv{}d_transpose'.format(convnd)
C
channingss 已提交
1639

C
channingss 已提交
1640 1641 1642 1643 1644
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1645 1646 1647 1648

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1649

1650 1651
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1652
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1653 1654
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1655
                              kernel_shape[1] - 1) + 1 + out_padding[1]
S
SunAhong1993 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        layer_inputs = {'x': val_x.name,
                       "weight": val_w.name}
        layer_attrs = {
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
            "groups": num_groups,
            "output_size": node.out_shapes[0][2:]}
        if val_b is not None:
            layer_inputs["bias"] = val_b.name
        self.paddle_graph.add_layer(
S
fix  
SunAhong1993 已提交
1667
            kernel=paddle_op,
S
SunAhong1993 已提交
1668 1669
            inputs=layer_inputs,
            outputs=[node.name],
S
fix  
SunAhong1993 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
            **layer_attrs)
        
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'axis': axis,
                      'keepdim': keepdims}
        self.paddle_graph.add_layer(
            'paddle.argmax', 
            inputs={"x": val_x.name}, 
            outputs=[node.name],
S
SunAhong1993 已提交
1683 1684 1685 1686 1687 1688 1689
            **layer_attrs)
        
    @print_mapping_info
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.shape", 
S
for pad  
SunAhong1993 已提交
1690
            inputs={"input": val_x.name}, 
S
SunAhong1993 已提交
1691
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1692 1693 1694 1695 1696
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))  
S
SunAhong1993 已提交
1697 1698 1699 1700 1701 1702 1703 1704
        self.paddle_graph.add_layer(
            "paddle.prod",
            inputs={"x": node.name},
            outputs=[node.name])

    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
for pad  
SunAhong1993 已提交
1705 1706 1707 1708 1709 1710
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": val_x.name}, 
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
1711 1712 1713 1714
        self.paddle_graph.add_layer(
            "paddle.sign", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])
S
for pad  
SunAhong1993 已提交
1715 1716 1717 1718 1719 1720
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
                "paddle.cast", 
                inputs={"x": node.name}, 
                outputs=[node.name],
                dtype=string(node.dtype))
S
SunAhong1993 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

    @print_mapping_info
    def OneHot(self, node):
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
            "custom_layer:one_hot", 
            inputs={"indices": indices.name,
                    "depth": depth.name,
                    "values": values.name}, 
            outputs=[node.name],
            axis=axis)

    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            "paddle.reciprocal", 
            inputs={"x": val_x.name}, 
            outputs=[node.name])