tf_decoder.py 19.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode, self).__init__(
                layer,
                layer.name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode, self).__init__(
                layer,
                layer_name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

J
jiangjiajun 已提交
41 42 43 44 45 46 47
        self.dtype_map = {
            1: "float32",
            3: "int32",
            4: "uint8",
            9: "int64",
            10: "bool"
        }
48 49 50

    @property
    def out_shapes(self):
M
mamingjie-China 已提交
51
        if self.layer_type == "OneShotIterator" or self.layer_type == "IteratorV2":
J
jiangjiajun@baidu.com 已提交
52 53 54
            values = self.layer.attr["output_shapes"].list.shape
        else:
            values = self.layer.attr["_output_shapes"].list.shape
55 56 57 58 59 60 61 62
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
63
        keys = ['dtype', 'T', 'DstT']
64 65 66 67
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
J
jiangjiajun@baidu.com 已提交
68 69
        if dtype == 0:
            dtype = self.layer.attr['output_types'].list.type[0]
70
        if dtype not in self.dtype_map:
M
mamingjie-China 已提交
71 72
            raise Exception("Dtype[{}] of node({}) not in dtype_map".format(
                dtype, self.layer.name))
73 74
        return self.dtype_map[dtype]

C
channingss 已提交
75 76 77 78 79 80 81 82 83
    def set_dtype(self, dtype):
        dtype_idx = 0
        for k, v in self.dtype_map.items():
            if v == dtype:
                dtype_idx = k
        if dtype_idx == 0:
            raise Exception("Cannot set dtype of node to '{}'".format(dtype))
        self.layer.attr['dtype'].type = dtype_idx

J
jiangjiajun 已提交
84 85 86 87 88 89 90 91 92
    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

J
jiangjiajun 已提交
93 94 95 96 97 98 99 100
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
101 102 103
    @property
    def name(self):
        if hasattr(self, 'index'):
S
SunAhong1993 已提交
104
            print(self.layer_type)
J
jiangjiajun 已提交
105 106 107
            return self.layer_name + "_p{}".format(self.index)
        return self.layer_name

J
jiangjiajun 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
129 130

class TFGraph(Graph):
J
jiangjiajun 已提交
131
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
132
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
133
        self.identity_map = dict()
S
SunAhong1993 已提交
134
        self.multi_out_ops = ['Split', 'SplitV', 'IteratorV2', 'Unpack']
J
jiangjiajun 已提交
135
        self.tf_data_format = data_format
S
SunAhong1993 已提交
136
        self.graph_name = "TFModel"
J
jiangjiajun 已提交
137 138 139

    def build(self):
        for layer in self.model.node:
M
mamingjie-China 已提交
140 141
            if layer.op == 'Assert':
                continue
J
jiangjiajun 已提交
142
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
143 144
                '-', '_')] = TFGraphNode(
                    layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
145

J
jiangjiajun 已提交
146
        for layer_name, node in self.node_map.items():
M
mamingjie-China 已提交
147 148
            if node.layer_type == 'Const':
                continue
J
jiangjiajun 已提交
149
            for in_node in node.layer.input:
J
jiangjiajun 已提交
150 151
                in_node = in_node.replace('/', '_').replace('-', '_').replace(
                    '^', '')
J
jiangjiajun 已提交
152 153
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
154
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
155
                    else:
156 157 158
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
159 160 161
                else:
                    self.connect(in_node, layer_name)

162
        super(TFGraph, self).build()
J
jiangjiajun 已提交
163

M
mamingjie-China 已提交
164 165 166 167 168 169 170 171
        for layer in self.model.node:
            if layer.op == 'Assert':
                for ipt in layer.input:
                    ipt_name = ipt.replace('-', '_').replace('/', '_')
                    if ipt_name in self.output_nodes:
                        idx = self.output_nodes.index(ipt_name)
                        del self.output_nodes[idx]

J
jiangjiajun 已提交
172 173
        # tensorflow graph optimize
        self._remove_isolated_node()
J
jiangjiajun@baidu.com 已提交
174
        self._optimize_dialiation_conv()
J
jiangjiajun 已提交
175
        self._remove_identity_node()
S
SunAhong1993 已提交
176
        self._remove_cast_node()
S
SunAhong1993 已提交
177
        
J
jiangjiajun 已提交
178 179 180

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
181
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
182 183 184
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
185
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
186 187
        if node is None:
            return None
S
SunAhong1993 已提交
188
        if node.layer_type in ["Switch", "Reshape", "Sub"]:
J
jiangjiajun 已提交
189 190
            if hasattr(node, 'index'):
                del node.index
J
jiangjiajun 已提交
191 192 193
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
S
SunAhong1993 已提交
194 195
    
    def get_input_node(self, node, idx=0, copy=False):
S
fix  
SunAhong1993 已提交
196
        input_node_name = node.layer.input[idx]
S
SunAhong1993 已提交
197 198
        if idx > 0:
            copy = True
S
SunAhong1993 已提交
199
        return self.get_node(input_node_name, copy)
J
jiangjiajun 已提交
200

J
jiangjiajun 已提交
201 202 203 204 205
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
206
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun@baidu.com 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    def _optimize_dialiation_conv(self):
        for name in list(self.node_map.keys()):
            node = self.node_map[name]
            if node.layer_type == "SpaceToBatchND":
                is_dilation = True
                out_node0 = self.node_map[node.outputs[0]]
                if out_node0.layer_type != 'ExpandDims':
                    is_dilation = False
                    continue
                out_node1 = self.node_map[out_node0.outputs[0]]
                if out_node1.layer_type != 'Conv2D':
                    is_dilation = False
                    continue
                out_node2 = self.node_map[out_node1.outputs[0]]
                if out_node2.layer_type != 'Squeeze':
                    is_dilation = False
                    continue
                out_node3 = self.node_map[out_node2.outputs[0]]
                if out_node3.layer_type != 'BatchToSpaceND':
                    is_dilation = False
                    continue

                if is_dilation:
                    node.skip = True
                    out_node3.skip = True
                    block_shape = self.node_map[node.inputs[1]]
                    out_node1.dilation = block_shape.value.tolist()

J
jiangjiajun 已提交
249 250 251 252
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
253
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
254 255 256
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
257
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
258 259 260 261 262 263 264 265 266
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
267 268

    def _remove_identity_node(self):
J
jiangjiajun 已提交
269 270
        identity_ops = [
            'Identity', 'StopGradient', 'Switch', 'Merge',
J
jiangjiajun@baidu.com 已提交
271
            'PlaceholderWithDefault', 'IteratorGetNext'
J
jiangjiajun 已提交
272
        ]
J
jiangjiajun 已提交
273 274
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
275
            if node.layer_type in identity_ops:
J
jiangjiajun 已提交
276 277 278 279 280
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
281
            self.remove_node(node_name)
J
jiangjiajun 已提交
282 283 284

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
285 286 287
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name
S
SunAhong1993 已提交
288 289 290 291 292
                if len(input_node.outputs) > 0:
                    self.output_nodes.pop(idx)
                else:
                    self.output_nodes[idx] = input_node.layer_name
                
J
jiangjiajun 已提交
293

J
jiangjiajun 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
315 316 317 318 319 320 321 322 323 324
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
325

J
jiangjiajun 已提交
326
class TFDecoder(object):
327
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
328 329 330 331
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
S
SunAhong1993 已提交
332
        self.inputs_info = dict()
333
        self.define_input_shape = define_input_shape
334 335 336 337 338
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
339
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
340
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
341
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
342
            self.sess.graph.as_default()
J
jiangjiajun 已提交
343
            tf.import_graph_def(graph_def, name='', input_map=input_map)
344

345 346 347 348 349
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
350

J
jiangjiajun 已提交
351
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
352
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
353
        self.tf_graph.build()
J
jiangjiajun 已提交
354 355 356 357 358 359

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
360 361

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
362
        numpy.random.seed(13)
J
jiangjiajun 已提交
363 364 365
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
M
mamingjie-China 已提交
366
            if layer.op != "Placeholder" and layer.op != "OneShotIterator" and layer.op != "IteratorV2":
J
jiangjiajun 已提交
367 368
                continue
            graph_node = TFGraphNode(layer)
369
            dtype = graph_node.layer.attr['dtype'].type
S
SunAhong1993 已提交
370 371
            if dtype == 10:
                continue
J
jiangjiajun 已提交
372 373

            need_define_shape = 0
374 375 376 377 378
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
379 380 381 382 383 384 385
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

J
jiangjiajun@baidu.com 已提交
386
            if need_define_shape == 1:
J
fix bug  
jiangjiajun 已提交
387 388 389 390 391 392
                try:
                    shape = graph_node.out_shapes[0]
                    if len(shape) > 0 and shape.count(-1) < 2:
                        need_define_shape = 0
                except:
                    pass
J
jiangjiajun@baidu.com 已提交
393

J
jiangjiajun 已提交
394
            if need_define_shape > 0:
395 396 397 398
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
399
                if need_define_shape == 1:
J
jiangjiajun 已提交
400 401
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
402
                elif need_define_shape == 2:
J
jiangjiajun 已提交
403
                    print(
J
jiangjiajun 已提交
404 405
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
406 407 408 409
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
410
                print(
J
jiangjiajun 已提交
411 412 413 414
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
M
mamingjie-China 已提交
415
                    try:
S
SunAhong1993 已提交
416
                        shape = raw_input(
M
mamingjie-China 已提交
417 418 419
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
J
jiangjiajun 已提交
420
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
421
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
422 423 424
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
425 426 427 428
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
429
                assert shape.count(None) <= 1, "Only one dimension can be None"
430 431 432 433 434 435
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
J
jiangjiajun 已提交
436 437 438 439
                    x2paddle_input = tf.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
440

J
jiangjiajun 已提交
441
                input_map["{}:0".format(layer.name)] = x2paddle_input
442 443
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
S
SunAhong1993 已提交
444
                self.inputs_info["x2paddle_{}".format(layer.name)] = (shape,
J
jiangjiajun 已提交
445 446 447 448
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
S
SunAhong1993 已提交
449
                self.inputs_info[layer.name] = (shape, dtype)
J
jiangjiajun 已提交
450

J
jiangjiajun 已提交
451
        return input_map
J
jiangjiajun 已提交
452 453 454

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
S
SunAhong1993 已提交
455
    def infer_tensor(self, graph_node, out_shape=None, use_diff_inputs=True):
J
jiangjiajun 已提交
456 457 458 459 460
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
S
SunAhong1993 已提交
461 462
        if use_diff_inputs:
            batch_size = [2, 3, 5]
J
jiangjiajun 已提交
463
        else:
S
SunAhong1993 已提交
464
            batch_size = [2]
J
jiangjiajun 已提交
465 466
        results = list()
        for b in batch_size:
S
SunAhong1993 已提交
467
            for input_name, info in self.inputs_info.items():
J
jiangjiajun 已提交
468
                (shape, dtype) = cp.deepcopy(info)
S
SunAhong1993 已提交
469
                input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
J
jiangjiajun 已提交
470 471 472 473
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
S
SunAhong1993 已提交
474 475 476 477
            if use_diff_inputs:
                results.append(self.sess.run([output_tensor], feed)[0].flatten())
            else:
                return self.sess.run([output_tensor], feed)[0]
J
jiangjiajun 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")
S
SunAhong1993 已提交
502