aten.py 68.2 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.util import *


def aten_adaptive_avg_pool2d(mapper, graph, node):
    """ 构造average adaptive pool2d的PaddleLayer。

S
SunAhong1993 已提交
21
    TorchScript示例:
S
SunAhong1993 已提交
22 23 24 25 26 27 28
        %x.5 : Tensor = aten::adaptive_avg_pool2d(%x.3, %_output_size.1)
        参数含义:
        %x.5 (Tensor): 池化后结果Tensor。
        %x.3 (Tensor): 输入Tensor。
        %_output_size.1 (list): 自适应池化后的Tensor的宽、高大小。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
29 30 31 32
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
33 34
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
35
    # 处理输入0,即%x.3
S
SunAhong1993 已提交
36
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
37
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
38
    # 获取当前节点输入的list
S
SunAhong1993 已提交
39 40 41 42 43
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%_output_size.1
    if inputs_name[1] in mapper.attrs:
        layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    else:
S
SunAhong1993 已提交
44 45
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
46
        layer_inputs["pool_size"] = inputs_name[1]
S
SunAhong1993 已提交
47 48 49
        current_inputs.append(inputs_name[1])
    layer_attrs["pool_type"] = string("avg")

S
SunAhong1993 已提交
50 51
    graph.add_layer(
        "fluid.layers.adaptive_pool2d",
S
SunAhong1993 已提交
52 53 54 55
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
56 57 58 59 60


def aten_addmm(mapper, graph, node):
    """ 构造addmm的PaddleLayer,该节点实现out = alpha ∗ x ∗ y + beta ∗ input。

S
SunAhong1993 已提交
61
    TorchScript示例:
S
SunAhong1993 已提交
62 63 64 65 66 67 68 69 70 71
        %ret.2 : Tensor = aten::addmm(%150, %input.3, %156, %151, %152)
        参数含义:
        %ret.2 (Tensor): addmm结果Tensor。
        %150 (Tensor): 输入Tensor input。
        %input.3 (Tensor): 输入Tensor x。
        %156 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
        %152 (int/float): 输入beta。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
72 73 74 75
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
76 77
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
78
    # 处理输入0,即%150
S
SunAhong1993 已提交
79
    mapper._check_input(
S
SunAhong1993 已提交
80
        graph, inputs_node[0], inputs_name[0], current_outputs, add_dim=True)
S
SunAhong1993 已提交
81 82
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%input.3
S
SunAhong1993 已提交
83
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
84 85
    layer_inputs["x"] = inputs_name[1]
    # 处理输入2,即%156
S
SunAhong1993 已提交
86
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
S
SunAhong1993 已提交
87
    layer_inputs["y"] = inputs_name[2]
S
SunAhong1993 已提交
88
    # 获取当前节点输入的list
S
SunAhong1993 已提交
89 90 91 92 93
    current_inputs = list(layer_inputs.values())
    # 处理输入3,即%152
    if inputs_name[3] in mapper.attrs:
        layer_attrs["beta"] = mapper.attrs[inputs_name[3]]
    else:
S
SunAhong1993 已提交
94 95
        mapper._check_input(graph, inputs_node[3], inputs_name[3],
                            current_outputs)
96
        layer_inputs["beta"] = inputs_name[3]
S
SunAhong1993 已提交
97 98 99 100 101
        current_inputs.append(inputs_name[3])
    # 处理输入4,即%151
    if inputs_name[4] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[4]]
    else:
S
SunAhong1993 已提交
102 103
        mapper._check_input(graph, inputs_node[4], inputs_name[4],
                            current_outputs)
104
        layer_inputs["alpha"] = inputs_name[4]
S
SunAhong1993 已提交
105 106
        current_inputs.append(inputs_name[4])

S
SunAhong1993 已提交
107
    graph.add_layer(
S
SunAhong1993 已提交
108 109 110 111 112
        "fluid.layers.addmm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
113 114


S
SunAhong1993 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
def aten_add(mapper, graph, node):
    """ 构造数值相加的PaddleLayer,该节点实现out = x + y。

    TorchScript示例:
        %296 : int = aten::add(%i.12, %288)
        参数含义:
        %296 (-): 相加结果。
        %i.12 (-): 输入数值 x。
        %288 (-): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.add", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
145
def aten_add_(mapper, graph, node):
S
SunAhong1993 已提交
146
    """ 构造数值相加的PaddleLayer,该节点实现out = x + alpha * y。
S
SunAhong1993 已提交
147

S
SunAhong1993 已提交
148
    TorchScript示例:
S
SunAhong1993 已提交
149
        %137 : Tensor = aten::add(%136, %130, %130)
S
SunAhong1993 已提交
150 151 152 153 154 155 156
        参数含义:
        %output.5 (Tensor): add结果Tensor。
        %output.2 (Tensor): 输入Tensor x。
        %150 (Tensor): 输入Tensor y。
        %151 (int/float): 输入alpha。
    """
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
157 158 159 160
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
161 162
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
163
    # 处理输入0,即%output.2
S
SunAhong1993 已提交
164
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
165 166 167
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%150
    mapper._check_input(
S
SunAhong1993 已提交
168
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
S
SunAhong1993 已提交
169
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
170
    # 获取当前节点输入的list
S
SunAhong1993 已提交
171 172 173 174 175
    current_inputs = list(layer_inputs.values())
    # 处理输入2,即%151
    if inputs_name[2] in mapper.attrs:
        layer_attrs["alpha"] = mapper.attrs[inputs_name[2]]
    else:
S
SunAhong1993 已提交
176 177
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
178
        layer_inputs["alpha"] = inputs_name[2]
S
SunAhong1993 已提交
179 180 181
        current_inputs.append(inputs_name[2])

    graph.add_layer(
S
SunAhong1993 已提交
182
        "prim.add_", inputs=layer_inputs, outputs=layer_outputs, **layer_attrs)
S
SunAhong1993 已提交
183
    return current_inputs, current_outputs
S
SunAhong1993 已提交
184 185


S
SunAhong1993 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
def aten___and__(mapper, graph, node):
    """ 构造与计算的PaddleLayer。

    TorchScript示例:
        %361 : bool = aten::__and__(%360, %358)
        参数含义:
        %361 (bool): 输出,与计算结果。
        %360 (-): 输入 x。
        %358 (-): 输入 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%i.12
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%288
206
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
207 208 209 210 211 212 213 214
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.and", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
215
def aten_append(mapper, graph, node):
S
SunAhong1993 已提交
216 217 218 219 220 221 222 223 224 225 226
    """ 构造对list进行append的PaddleLayer。

    TorchScript示例:
        %90 : int[] = aten::append(%_output_size.1, %v.1)
        参数含义:
        %90 (list): 输出,append后的list。
        %_output_size.1 (list): 需要进行append的list。
        %v.1 (-): append的元素。
    """
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
227
    layer_outputs = [inputs_name[0]]
S
SunAhong1993 已提交
228
    # 获取当前节点输出的list
S
SunAhong1993 已提交
229
    current_outputs = [inputs_name[0]]
S
SunAhong1993 已提交
230
    # 处理输入0,即_output_size.1
S
SunAhong1993 已提交
231
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
232 233
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即v.1
S
SunAhong1993 已提交
234
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
235
    layer_inputs["element"] = inputs_name[1]
S
SunAhong1993 已提交
236
    # 获取当前节点输入的list
S
SunAhong1993 已提交
237 238 239 240
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.append", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
241 242


S
SunAhong1993 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
def aten_avg_pool2d(mapper, graph, node):
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %branch_pool.2 : Tensor = aten::avg_pool2d(%x.43, %538, %539, %540, %273, %272, %271)
        参数含义:
        %branch_pool.2 (Tensor): 输出,池化后的结果。
        %x.43 (Tensor): 需要池化的Tensor。
        %538 (list): 池化kernel的大小。
        %539 (list): 步长大小。
        %540 (list): 填充大小。
        %273 (bool): 是否用ceil函数计算输出高度和宽度。
        %272 (bool): 是否在平均池化模式不忽略填充值,False为忽略。
        %271 (int): 如果指定,它将用作除数,否则将使用池化区域的大小。
    """
    if "pool" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["pool"] += 1
    else:
        mapper.dygraph_name_id["pool"] = 0
    pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [pool_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.34
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%538
    layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%539
    layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%540
    layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%273
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%272
    layer_attrs["exclusive"] = not mapper.attrs[inputs_name[5]]
    # 处理输入6,即%271
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[6]],
        type="eq",
        key=mapper.attrs[inputs_name[6]],
        value=None)
    layer_attrs["pool_type"] = string("avg")

    graph.add_layer(
        "fluid.dygraph.Pool2D",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
def aten_batch_norm(mapper, graph, node):
    """ 构造BatchNorm的PaddleLayer。

    TorchScript示例:
        %input.81 : Tensor = aten::batch_norm(%input.80, %778, %779, %776, %777, %780,
                                              %exponential_average_factor.23, %766, %781)
        参数含义:
        %input.81 (Tensor): 输出,批处理后的结果。
        %input.80 (Tensor): 需要进行批处理的特征层。
        %778 (Tensor): weights。
        %779 (Tensor): bias。
        %776 (Tensor): 全局均值。
        %777 (Tensor): 全局方差。
        %780 (bool): 是否训练。
        %exponential_average_factor.23 (float): 用于计算均值和方差的比例。
        %766 (float): 为了数值稳定加在分母上的值。
        %781 (bool): 是否启用cudnn。
    """
    if "batchnorm" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["batchnorm"] += 1
    else:
        mapper.dygraph_name_id["batchnorm"] = 0
    batchnorm_name = "batchnorm" + str(mapper.dygraph_name_id["batchnorm"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [batchnorm_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    layer_attrs["is_test"] = True
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.80
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%778
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[batchnorm_name + ".weight"] = weights
    layer_attrs['num_channels'] = weights.shape[0]
    # 处理输入2,即%779
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
        if bias is not None:
            mapper.paddle_params[batchnorm_name + ".bias"] = bias
    else:
        mapper.paddle_params[batchnorm_name + ".bias"] = False
    # 处理输入3,即%776
    mean = mapper.pytorch_params[inputs_name[3]]
    mapper.paddle_params[batchnorm_name + "._mean"] = mean
    # 处理输入4,即%777
    var = mapper.pytorch_params[inputs_name[4]]
    mapper.paddle_params[batchnorm_name + "._variance"] = var
    # 处理输入6,即%exponential_average_factor.23
    layer_attrs["momentum"] = mapper.attrs[inputs_name[6]]
    # 处理输入7,即%766
    layer_attrs["epsilon"] = mapper.attrs[inputs_name[7]]

    graph.add_layer(
        "fluid.dygraph.BatchNorm",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
def aten_cat(mapper, graph, node):
    """ 构造连接Tensor的PaddleLayer。

    TorchScript示例:
        %x.222 : Tensor = aten::cat(%32, %7)
        参数含义:
        %x.222 (Tensor): 输出,连接后的结果。
        %i.12 (list): 需要连接的Tensor组成的list。
        %7 (int): 连接的轴。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axis"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
397
        layer_inputs["axis"] = inputs_name[1]
S
SunAhong1993 已提交
398 399 400 401 402 403 404 405 406
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "fluid.layers.concat",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
def aten_chunk(mapper, graph, node):
    """构造分割Tensor的PaddleLayer。

    TorchScript示例:
        %724 : Tensor[] = aten::chunk(%input.170, %720, %719)
        参数含义:
        %724 (Tensor): 输出,分割后的结果。
        %input.170 (Tensor): 需要进行分割的Tensor。
        %720 (int): 分割的块数。
        %719 (int): 分割的维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%input.170
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%720
    if inputs_name[1] in mapper.attrs:
        layer_attrs["num_or_sections"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["num_or_sections"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%719
    if inputs_name[2] in mapper.attrs:
        layer_attrs["dim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["dim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    graph.add_layer(
        "fluid.layers.split",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
def aten___contains__(mapper, graph, node):
    """ 构造in的PaddleLayer。

    TorchScript示例:
        %51 : bool = aten::__contains__(%50, %name.1)
        参数含义:
        %51 (bool): 输出,第一个元素是否包含第二个元素。
        %50 (-): 需对比的输入1。
        %name.1 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%50
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%name.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["element"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.contain", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
def aten_contiguous(mapper, graph, node):
    """ 构造在内存中连续存储的PaddleLayer。

    TorchScript示例:
        %x.7 : Tensor = aten::contiguous(%4058, %4046)
        参数含义:
        %x.7 (Tensor): 输出,在内存中连续存储的Tensor。
        %4058 (Tensor): 原始Tensor。
        %4046 (int): 存储的形式。

    【注意】Paddle中无此用法,所以此处翻译成赋值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4058
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.equal", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
512
def aten_conv2d(mapper, graph, node):
S
SunAhong1993 已提交
513 514 515 516 517 518 519 520 521 522 523 524 525 526
    """ 构造conv2d的PaddleLayer。

    TorchScript示例:
        %input.10 : Tensor = aten::conv2d(%input.8, %25, %27, %28, %29, %30, %26)
        参数含义:
        %input.10 (Tensor): 输出,卷积后的结果。
        %input.8 (Tensor): 需要进行卷积的特征层。
        %25 (Tensor): weights。
        %27 (Tensor): bias。
        %28 (int): 步长大小。
        %29 (int): 填充大小。
        %30 (int): 膨胀系数大小。
        %26 (int): 卷积的组数。
    """
S
SunAhong1993 已提交
527 528 529 530 531
    if "conv" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["conv"] += 1
    else:
        mapper.dygraph_name_id["conv"] = 0
    conv2d_name = "conv" + str(mapper.dygraph_name_id["conv"])
S
SunAhong1993 已提交
532 533 534 535 536
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [conv2d_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
537 538
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
539
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
540
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
541
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
542
    # 获取当前节点输入的list
S
SunAhong1993 已提交
543 544 545 546 547 548 549 550 551
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%25
    weights = mapper.pytorch_params[inputs_name[1]]
    mapper.paddle_params[conv2d_name + ".weight"] = weights
    layer_attrs["num_filters"] = weights.shape[0]
    layer_attrs["filter_size"] = weights.shape[2:]
    # 处理输入2,即%27
    if inputs_name[2] in mapper.pytorch_params:
        bias = mapper.pytorch_params[inputs_name[2]]
S
SunAhong1993 已提交
552 553 554 555
        if bias is not None:
            mapper.paddle_params[conv2d_name + ".bias"] = bias
        else:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
556
    else:
S
SunAhong1993 已提交
557
        layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
558 559 560 561 562 563 564 565 566 567 568
    # 处理输入3,即%28
    layer_attrs["stride"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%29
    layer_attrs["padding"] = mapper.attrs[inputs_name[4]]
    # 处理输入5,即%30
    layer_attrs["dilation"] = mapper.attrs[inputs_name[5]]
    # 处理输入6,即%26
    layer_attrs["groups"] = mapper.attrs[inputs_name[6]]
    layer_attrs['num_channels'] = weights.shape[1] * mapper.attrs[inputs_name[
        6]]

S
SunAhong1993 已提交
569 570
    graph.add_layer(
        "fluid.dygraph.Conv2D",
S
SunAhong1993 已提交
571 572 573 574
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
575 576


S
SunAhong1993 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
def aten_dict(mapper, graph, node):
    """ 构造初始化dict的PaddleLayer。

    TorchScript示例:
        %features.1 : Dict(str, Tensor) = aten::dict()
        参数含义:
        %features.1: 输出,初始化的dict。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    current_inputs = {}
    # 获取当前节点输出的list
    current_outputs = [output_name]

    graph.add_layer("prim.dict", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
596
def aten_dim(mapper, graph, node):
S
SunAhong1993 已提交
597 598 599 600 601 602 603 604
    """ 构造获取维度的PaddleLayer。

    TorchScript示例:
        %106 : int = aten::dim(%101)
        参数含义:
        %106 (int): 输出,Tensor的维度。
        %101 (Tensor): 输入的Tensor。
    """
S
SunAhong1993 已提交
605
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
606 607 608
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
609 610
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
611
    # 处理输入0,即%input.8
S
SunAhong1993 已提交
612
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
613
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
614
    # 获取当前节点输入的list
S
SunAhong1993 已提交
615 616 617
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.shape", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
618
    graph.add_layer(
S
SunAhong1993 已提交
619 620
        "prim.len", inputs={"input": output_name}, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
621 622 623


def aten_dropout(mapper, graph, node):
S
SunAhong1993 已提交
624 625 626 627 628 629 630 631 632
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
S
SunAhong1993 已提交
633 634 635 636 637
    if "dropout" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["dropout"] += 1
    else:
        mapper.dygraph_name_id["dropout"] = 0
    dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
S
SunAhong1993 已提交
638 639 640 641
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [dropout_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
642 643
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
644
    # 处理输入0,即%119
S
SunAhong1993 已提交
645
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
646 647 648 649
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
650 651
    graph.add_layer(
        "fluid.dygraph.Dropout",
S
SunAhong1993 已提交
652 653
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
654
        p=0.0)
S
SunAhong1993 已提交
655
    return current_inputs, current_outputs
S
SunAhong1993 已提交
656 657


S
SunAhong1993 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
def aten_dropout_(mapper, graph, node):
    """ 构造Dropout的PaddleLayer。

    TorchScript示例:
        %119 : Tensor = aten::dropout_(%result.3, %117, %118)
        参数含义:
        %119 (Tensor): Dropout后的Tensor。
        %result.3 (Tensor): 输入Tensor。
        %118 (bool): 是否是训练阶段。
    """
    if "dropout" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["dropout"] += 1
    else:
        mapper.dygraph_name_id["dropout"] = 0
    dropout_name = "dropout" + str(mapper.dygraph_name_id["dropout"])
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [dropout_name, output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%119
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.dygraph.Dropout",
        inputs=layer_inputs,
        outputs=layer_outputs,
        p=0.0)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
693
def aten_eq(mapper, graph, node):
S
SunAhong1993 已提交
694 695 696 697 698 699 700 701 702
    """ 构造判断数值是否相等的PaddleLayer。

    TorchScript示例:
        %125 : bool = aten::eq(%124, %123)
        参数含义:
        %125 (bool): 对比后结果。
        %124 (-): 需对比的输入1。
        %123 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
703
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
704 705 706
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
707 708
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
709
    # 处理输入0,即%124
S
SunAhong1993 已提交
710 711
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
712
    # 处理输入1,即%123
S
SunAhong1993 已提交
713 714 715
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
S
SunAhong1993 已提交
716 717 718 719
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.eq", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
720 721 722


def aten_flatten(mapper, graph, node):
S
SunAhong1993 已提交
723 724 725 726 727 728 729 730 731 732 733 734
    """ 构造flatten的PaddleLayer。

    TorchScript示例:
        %x.8 : Tensor = aten::flatten(%x, %4, %2)
        参数含义:
        %x.8 (Tensor): flatten后结果。
        %x (Tensor): 输入Tensor。
        %4 (int): flatten的开始维度。
        %2 (int): flatten的结束维度。

    注意:目前flatten只支持第一维的flatten
    """
S
SunAhong1993 已提交
735
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
736 737 738
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
739 740
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
    # 处理输入1,即%4
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[1]],
        type='eq',
        key=mapper.attrs[inputs_name[1]],
        value=1)
    # 处理输入2,即%2
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[2]],
        type='eq',
        key=mapper.attrs[inputs_name[2]],
        value=-1)
    # 处理输入0,即%x
S
SunAhong1993 已提交
758
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
759
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
760
    # 获取当前节点输入的list
S
SunAhong1993 已提交
761 762
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
763 764
    graph.add_layer(
        "fluid.layers.flatten",
S
SunAhong1993 已提交
765 766
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
767
        axis=1)
S
SunAhong1993 已提交
768
    return current_inputs, current_outputs
S
SunAhong1993 已提交
769 770


S
SunAhong1993 已提交
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
def aten_Float(mapper, graph, node):
    """ 构造取浮点型的PaddleLayer。

    TorchScript示例:
        %3992 : float = aten::Float(%3991)
        参数含义:
        %3992 (int): 向上取整后的整数。
        %3991 (float): 需要取整的浮点数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3991
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.float", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_floor(mapper, graph, node):
    """ 构造向上取整的PaddleLayer。

    TorchScript示例:
        %3978 : int = aten::floor(%scale.18)
        参数含义:
        %3978 (int): 向上取整后的整数。
        %scale.18 (float): 需要取整的浮点数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%scale.18
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floor", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


821 822 823 824 825 826 827
def aten_floordiv(mapper, graph, node):
    """ 构造向上取整除法的PaddleLayer。

    TorchScript示例:
        %channels_per_group.2 : int = aten::floordiv(%num_channels.2, %3690)
        参数含义:
        %channels_per_group.2 (-): 除后的结果。
S
SunAhong1993 已提交
828
        %num_channels.2 (-): 被除数。
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
        %2 (int): 除数。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.floordiv", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
850
def aten___getitem__(mapper, graph, node):
S
SunAhong1993 已提交
851 852 853 854 855 856 857 858 859
    """ 构造获取list中元素的PaddleLayer。

    TorchScript示例:
        %v.1 : int = aten::__getitem__(%72, %88)
        参数含义:
        %v.1 (-): 输出,list中的元素。
        %72 (list): 需要获取元素的list。
        %88 (int): 索引。
    """
S
SunAhong1993 已提交
860
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
861 862 863
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
864 865
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
866
    # 处理输入0,即%72
S
SunAhong1993 已提交
867
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
868 869
    layer_inputs["list"] = inputs_name[0]
    # 处理输入1,即%88
S
SunAhong1993 已提交
870
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
871
    layer_inputs["index"] = inputs_name[1]
S
SunAhong1993 已提交
872
    # 获取当前节点输入的list
S
SunAhong1993 已提交
873 874 875 876
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.getitem", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
877 878


S
SunAhong1993 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
def aten_gt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %83 : bool = aten::gt(%82, %78)
        参数含义:
        %83 (bool): 输出,第一个元素是否大于第二个元素。
        %82 (-): 需对比的输入1。
        %78 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%82
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%78
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.gt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
def aten_hardtanh_(mapper, graph, node):
    """ 构造hardtanh激活的PaddleLayer。

    TorchScript示例:
        %result.9 : Tensor = aten::hardtanh_(%input.20, %67, %66)
        参数含义:
        %result.9 (Tensor): 输出,hardtanh激活后的Tensor。
        %input.20 (Tensor): 需要hardtanh激活的Tensor。
        %67 (float): hardtanh激活的最小阈值。
        %66 (float): hardtanh激活的最大阈值。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入1,即%67
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[1]],
        type='eq',
        key=mapper.attrs[inputs_name[1]],
        value=0.0)
    # 处理输入2,即%66
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[2]],
        type='eq',
        key=mapper.attrs[inputs_name[2]],
        value=6.0)
    # 处理输入0,即%input.20
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        'fluid.layers.relu6',
        inputs=layer_inputs,
        outputs=layer_outputs,
        threshold=6.0)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
def aten___is__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.is", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten___isnot__(mapper, graph, node):
    """ 构造is not的PaddleLayer。

    TorchScript示例:
        %3949 : bool = aten::__isnot__(%size.122, %3931)
        参数含义:
        %3949 (bool): 输出,第一个元素是否不是第二个元素。
        %size.122 (-): 需对比的输入1。
        %3931 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size.122
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%3931
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.isnot", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1013
def aten_le(mapper, graph, node):
S
SunAhong1993 已提交
1014 1015 1016 1017 1018
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::le(%78, %79)
        参数含义:
S
SunAhong1993 已提交
1019
        %80 (bool): 输出,第一个元素是否小于等于第二个元素。
S
SunAhong1993 已提交
1020 1021 1022
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
S
SunAhong1993 已提交
1023
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1024 1025 1026
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1027 1028
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1029
    # 处理输入0,即%78
S
SunAhong1993 已提交
1030
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1031
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1032
    # 处理输入1,即%79
S
SunAhong1993 已提交
1033
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1034
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1035
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1036 1037 1038 1039
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.le", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1040 1041 1042


def aten_len(mapper, graph, node):
S
SunAhong1993 已提交
1043 1044 1045 1046 1047 1048 1049 1050
    """ 构造获取list长度的PaddleLayer。

    TorchScript示例:
        %85 : int = aten::len(%83)
        参数含义:
        %85 (int): 输出,list的长度。
        %72 (list): 需要获取长度的list。
    """
S
SunAhong1993 已提交
1051
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1052 1053 1054
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1055 1056
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1057
    # 处理输入0,即%72
S
SunAhong1993 已提交
1058
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1059
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1060
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1061 1062 1063 1064
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.len", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1065 1066


S
SunAhong1993 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
def aten_lt(mapper, graph, node):
    """ 构造对比大小的PaddleLayer。

    TorchScript示例:
        %80 : bool = aten::lt(%78, %79)
        参数含义:
        %80 (bool): 输出,第一个元素是否小于第二个元素。
        %78 (-): 需对比的输入1。
        %79 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%78
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%79
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.lt", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1096
def aten_max_pool2d(mapper, graph, node):
S
SunAhong1993 已提交
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    """ 构造最大池化的PaddleLayer。

    TorchScript示例:
        %input.8 : Tensor = aten::max_pool2d(%result.11, %20, %23, %21, %22, %19)
        参数含义:
        %input.8 (Tensor): 输出,池化后的结果。
        %result.11 (Tensor): 需要池化的Tensor。
        %20 (list): 池化kernel的大小。
        %23 (list): 步长大小。
        %21 (list): 填充大小。
        %22 (list): 膨胀系数大小。
        %19 (bool): 是否用ceil函数计算输出高度和宽度。
    """
S
SunAhong1993 已提交
1110 1111 1112 1113 1114
    if "pool" in mapper.dygraph_name_id:
        mapper.dygraph_name_id["pool"] += 1
    else:
        mapper.dygraph_name_id["pool"] = 0
    pool_name = "pool" + str(mapper.dygraph_name_id["pool"])
S
SunAhong1993 已提交
1115 1116 1117 1118 1119
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [pool_name, output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1120 1121
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1122
    # 处理输入0,即%result.11
S
SunAhong1993 已提交
1123
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1124
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1125
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%20
    layer_attrs["pool_size"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%23
    layer_attrs["pool_stride"] = mapper.attrs[inputs_name[2]]
    # 处理输入3,即%21
    layer_attrs["pool_padding"] = mapper.attrs[inputs_name[3]]
    # 处理输入4,即%22
    graph.add_layer(
        "prim.assert",
        inputs={},
        outputs=[inputs_name[4]],
        type="eq",
        key=mapper.attrs[inputs_name[4]],
        value=[1, [1, 1]])
    # 处理输入5,即%19
    layer_attrs["ceil_mode"] = mapper.attrs[inputs_name[5]]
    layer_attrs["pool_type"] = string("max")

S
SunAhong1993 已提交
1145 1146
    graph.add_layer(
        "fluid.dygraph.Pool2D",
S
SunAhong1993 已提交
1147 1148 1149 1150
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1151 1152 1153


def aten_matmul(mapper, graph, node):
S
SunAhong1993 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162
    """ 构造矩阵相乘的PaddleLayer。

    TorchScript示例:
        %output.2 : Tensor = aten::matmul(%101, %111)
        参数含义:
        %output.2 (Tensor): 输出,相乘后的结果。
        %101 (Tensor): 矩阵1。
        %102 (Tensor): 矩阵2。
    """
S
SunAhong1993 已提交
1163
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1164 1165 1166
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1167 1168
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1169
    # 处理输入0,即%101
S
SunAhong1993 已提交
1170
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1171 1172
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%102
S
SunAhong1993 已提交
1173
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
S
SunAhong1993 已提交
1174
    layer_inputs["y"] = inputs_name[1]
S
SunAhong1993 已提交
1175
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1176 1177 1178 1179 1180
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.matmul", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1181 1182


1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
def aten_mean(mapper, graph, node):
    """ 构造求均值的PaddleLayer。

    TorchScript示例:
        %x.28 : Tensor = aten::mean(%result.1, %4967, %3, %2)
        参数含义:
        %x.28 (Tensor): 输出,求均值后的结果。
        %result.1 (Tensor): 输入,需要求均值的Tensor。
        %4967 (int/list): 求平均值运算的维度。
        %3 (bool): 是否在输出Tensor中保留减小的维度。
        %2 (Tensor): 结果Tensor。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4967
    if inputs_name[1] in mapper.attrs:
        layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["dim"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%3
    if inputs_name[1] in mapper.attrs:
        layer_attrs["keep_dim"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["keep_dim"] = inputs_name[2]
        current_inputs.append(inputs_name[2])

    graph.add_layer(
        "fluid.layers.reduce_mean",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
def aten_mul(mapper, graph, node):
    """ 构造数值相乘的PaddleLayer。

    TorchScript示例:
        %size_prods.39 : int = aten::mul(%size_prods.38, %114)
        参数含义:
        %size_prods.39 (Tensor): 输出,相乘后的结果。
        %size_prods.38 (-): 数值1。
        %114 (-): 数值2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%size_prods.38
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%114
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    current_outputs = layer_outputs

    graph.add_layer("prim.mul", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_ne(mapper, graph, node):
    """ 构造判断数值是否不相等的PaddleLayer。

    TorchScript示例:
        %134 : bool = aten::ne(%133, %132)
        参数含义:
        %134 (bool): 对比后结果。
        %133 (-): 需对比的输入1。
        %132 (-): 需对比的输入2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%123
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.ne", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


def aten_neg(mapper, graph, node):
    """ 构造对数值取负的PaddleLayer。

    TorchScript示例:
        %909 : int = aten::neg(%908)
        参数含义:
        %909 (int): 取负后结果。
        %908 (int): 需取负的输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.neg", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
def aten___not__(mapper, graph, node):
    """ 构造对bool型取负的PaddleLayer。

    TorchScript示例:
        %4498 : bool = aten::__not__(%aux_defined.2)
        参数含义:
        %4498 (bool): 取负后结果。
        %aux_defined.2 (bool): 需取负的输入。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%124
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.not", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
def aten_relu(mapper, graph, node):
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%result.5
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "fluid.layers.relu", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1368
def aten_relu_(mapper, graph, node):
S
SunAhong1993 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    """ 构造ReLU激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu_(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU后的结果。
        %result.5 (Tensor): 需要ReLU的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
1379
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1380 1381 1382
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1383 1384
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1385
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1386
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1387
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1388
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1389 1390
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1391
    graph.add_layer(
S
SunAhong1993 已提交
1392 1393
        "fluid.layers.relu", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1394 1395 1396


def aten_relu6(mapper, graph, node):
S
SunAhong1993 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    """ 构造ReLU6激活的PaddleLayer。

    TorchScript示例:
        %result.3 : Tensor = aten::relu6(%input.5)
        参数含义:
        %result.3 (Tensor): 输出,ReLU6后的结果。
        %result.5 (Tensor): 需要ReLU6的Tensor。

    注意: inplace这个参数在paddle中未实现
    """
S
SunAhong1993 已提交
1407
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1408 1409 1410
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1411 1412
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1413
    # 处理输入0,即%result.5
S
SunAhong1993 已提交
1414
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1415 1416 1417 1418
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1419 1420
    graph.add_layer(
        "fluid.layers.relu6",
S
SunAhong1993 已提交
1421 1422
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1423
        threshold=6.0)
S
SunAhong1993 已提交
1424
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1425 1426


S
SunAhong1993 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
def aten_reshape(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %x.6 : Tensor = aten::reshape(%4700, %4703)
        参数含义:
        %x.6 (Tensor): 输出,reshape后的Tensor。
        %4700 (Tensor): 需要reshape的Tensor。
        %4703 (list): 形状大小组成的list。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%4700
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
1449 1450 1451 1452 1453 1454 1455 1456
    # 处理输入1,即%4703
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
S
SunAhong1993 已提交
1457 1458

    graph.add_layer(
1459 1460 1461 1462
        "fluid.layers.reshape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
S
SunAhong1993 已提交
1463 1464 1465
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
def aten_select(mapper, graph, node):
    """ 构造选取特定维度Variable的PaddleLayer。

    TorchScript示例:
        %19 : Tensor = aten::select(%18, %8, %7)
        参数含义:
        %19 (Tensor): 输出,选取的Tensor。
        %18 (Tensor): 需要选取的Tensor。
        %8 (int): select的维度。
        %7 (int): select的第n个向量。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%18
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%8
    layer_attrs["dim"] = mapper.attrs[inputs_name[1]]
    # 处理输入2,即%75
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["index"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer(
        "prim.select",
        inputs=layer_inputs,
        outputs=current_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
def aten__set_item(mapper, graph, node):
    """ 构造对dict加入元素的PaddleLayer。

    TorchScript示例:
        = aten::_set_item(%features.1, %out_name.1, %x.3)
        参数含义:
        %features.1 (list): dict。
        %out_name.1 (-): dict的key。
        %x.3 (-): dict的value。
    """
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = []
    # 处理输入0,即%features.1
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["dict"] = inputs_name[0]
    # 处理输入1,即%out_name.1
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["key"] = inputs_name[1]
    # 处理输入2,即%x.3
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["value"] = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.set_item", inputs=layer_inputs, outputs=[])
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1533
def aten_size(mapper, graph, node):
S
SunAhong1993 已提交
1534 1535 1536 1537 1538 1539 1540 1541
    """ 构造获取shape的PaddleLayer。

    TorchScript示例:
        %73 : int[] = aten::size(%x.12)
        参数含义:
        %73 (list): 输出,shape的list。
        %x.12 (Tensor): 需要获取shape的Tensor。
    """
S
SunAhong1993 已提交
1542
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1543 1544 1545
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1546 1547
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1548
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
1549
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1550
    layer_inputs["input"] = inputs_name[0]
S
SunAhong1993 已提交
1551
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1552 1553 1554 1555
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.shape", inputs=layer_inputs, outputs=layer_outputs)
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1556 1557 1558


def aten_slice(mapper, graph, node):
S
SunAhong1993 已提交
1559
    """ 构造切分list或Variable的PaddleLayer。
S
SunAhong1993 已提交
1560 1561 1562 1563

    TorchScript示例:
        %83 : int[] = aten::slice(%73, %82, %75, %77)
        参数含义:
S
SunAhong1993 已提交
1564 1565
        %83 (list/Tensor): 输出,切分后的list。
        %73 (list/Tensor): 需要切分的list。
S
SunAhong1993 已提交
1566 1567 1568 1569
        %82 (int): 切分的开始索引。
        %75 (int): 切分的结束索引。
        %77 (int): 切分的步长。
    """
S
SunAhong1993 已提交
1570
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1571 1572 1573
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1574 1575
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1576
    # 处理输入0,即%73
S
SunAhong1993 已提交
1577
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1578 1579
    layer_inputs["input"] = inputs_name[0]
    # 处理输入1,即%82
S
SunAhong1993 已提交
1580 1581
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    layer_inputs["start"] = inputs_name[1]
S
SunAhong1993 已提交
1582
    # 处理输入2,即%75
S
SunAhong1993 已提交
1583 1584
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    layer_inputs["end"] = inputs_name[2]
S
SunAhong1993 已提交
1585
    # 处理输入3,即%77
S
SunAhong1993 已提交
1586 1587 1588 1589
    mapper._check_input(graph, inputs_node[3], inputs_name[3], current_outputs)
    layer_inputs["step"] = inputs_name[3]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
S
SunAhong1993 已提交
1590

S
SunAhong1993 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
    graph.add_layer("prim.slice", inputs=layer_inputs, outputs=current_outputs)
    return current_inputs, current_outputs


def aten_sub(mapper, graph, node):
    """ 构造数值相减的PaddleLayer。

    TorchScript示例:
        %840 : int = aten::sub(%839, %836)
        参数含义:
        %840 (-): 相减结果。
        %839 (-): 输入数值 x。
        %836 (-): 输入数值 y。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%839
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%836
    mapper._check_input(
        graph, inputs_node[1], inputs_name[1], current_outputs, add_dim=True)
    layer_inputs["y"] = inputs_name[1]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())

    graph.add_layer("prim.sub", inputs=layer_inputs, outputs=layer_outputs)
S
SunAhong1993 已提交
1622
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1623 1624 1625


def aten_t(mapper, graph, node):
S
SunAhong1993 已提交
1626 1627 1628
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
S
SunAhong1993 已提交
1629
        %840 : int = aten::sub(%839, %836)
S
SunAhong1993 已提交
1630 1631 1632 1633
        参数含义:
        %109 (Tensor): 输出,转置后的矩阵。
        %102 (Tensor): 需要转置的Tensor。
    """
S
SunAhong1993 已提交
1634
    output_name = mapper._get_outputs_name(node)[0]
S
SunAhong1993 已提交
1635 1636 1637
    layer_outputs = [output_name]
    layer_inputs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
S
SunAhong1993 已提交
1638 1639
    # 获取当前节点输出的list
    current_outputs = [output_name]
S
SunAhong1993 已提交
1640
    # 处理输入0,即%x.12
S
SunAhong1993 已提交
1641
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
S
SunAhong1993 已提交
1642
    layer_inputs["x"] = inputs_name[0]
S
SunAhong1993 已提交
1643
    # 获取当前节点输入的list
S
SunAhong1993 已提交
1644 1645
    current_inputs = list(layer_inputs.values())

S
SunAhong1993 已提交
1646 1647
    graph.add_layer(
        "fluid.layers.transpose",
S
SunAhong1993 已提交
1648 1649
        inputs=layer_inputs,
        outputs=layer_outputs,
S
SunAhong1993 已提交
1650
        perm=[1, 0])
S
SunAhong1993 已提交
1651
    return current_inputs, current_outputs
S
SunAhong1993 已提交
1652 1653


1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
def aten_transpose(mapper, graph, node):
    """ 构造矩阵转置的PaddleLayer。

    TorchScript示例:
        %715 : Tensor = aten::transpose(%x.21, %704, %705)
        参数含义:
        %715 (Tensor): 输出,转置后的矩阵。
        %x.21 (Tensor): 需要转置的Tensor。
        %704 (int): 转置的维度1。
        %705 (int): 转置的维度2。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.21
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 处理输入1,即%704
    mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs)
    dim1 = inputs_name[1]
    # 处理输入2,即%705
    mapper._check_input(graph, inputs_node[2], inputs_name[2], current_outputs)
    dim2 = inputs_name[2]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    graph.add_layer(
        "prim.shape",
        inputs={"input": inputs_name[0]},
        outputs=[output_name + "_shape"])
    current_outputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len",
        inputs={"input": output_name + "_shape"},
        outputs=[output_name + "_len"])
    current_outputs.append(output_name + "_len")
    current_inputs.append(output_name + "_shape")
    graph.add_layer(
        "prim.len2list",
        inputs={"len": output_name + "_len"},
        outputs=[output_name + "_list"])
    current_outputs.append(output_name + "_list")
    current_inputs.append(output_name + "_len")
    graph.add_layer(
        "prim.replaceitem",
        inputs={"list": output_name + "_list",
                "index": dim1,
                "item": dim2},
        outputs=[])
    graph.add_layer(
        "prim.replaceitem",
        inputs={"list": output_name + "_list",
                "index": dim2,
                "item": dim1},
        outputs=[])
    graph.add_layer(
        "fluid.layers.transpose",
        inputs=layer_inputs,
        outputs=layer_outputs,
        perm=output_name + "_list")
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
def aten_unsqueeze(mapper, graph, node):
    """ 构造插入维度的PaddleLayer。

    TorchScript示例:
        %13 : Tensor = aten::unsqueeze(%12, %7)
        参数含义:
        %13 (Tensor): 输出,插入维度后的Tensor。
        %12 (Tensor): 需要插入维度的Tensor。
        %7 (int): 维度。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%12
    if inputs_name[1] in mapper.attrs:
        layer_attrs["axes"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
1748
        layer_inputs["axes"] = inputs_name[1]
S
SunAhong1993 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757
        current_inputs.append(inputs_name[1])
    graph.add_layer(
        "fluid.layers.unsqueeze",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
def aten_upsample_bilinear2d(mapper, graph, node):
    """ 构造使用bilinear上采样的PaddleLayer。

    TorchScript示例:
        %4997 : Tensor = aten::upsample_bilinear2d(%x.13, %4963, %5421, %4995, %4996)
        参数含义:
        %4997 (Tensor): 输出,上采样后的Tensor。
        %x.13 (Tensor): 需要上采样的Tensor。
        %4963 (list): 上采样后的大小。
        %5421 (bool): 若为True,则将输入和输出张量的4个角落像素的中心对齐,并保留角点像素的值。
        %4995 (float): 高度的乘数因子。
        %4995 (float): 宽度的乘数因子。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.13
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%4963
    if inputs_name[1] in mapper.attrs:
        layer_attrs["out_shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["out_shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])
    # 处理输入2,即%5421
    if inputs_name[2] in mapper.attrs:
        layer_attrs["align_corners"] = mapper.attrs[inputs_name[2]]
    else:
        mapper._check_input(graph, inputs_node[2], inputs_name[2],
                            current_outputs)
        layer_inputs["align_corners"] = inputs_name[2]
        current_inputs.append(inputs_name[2])
    # 处理输入3和4,构造assert
    list_layer_inputs = {}
    mapper._check_input(graph, inputs_node[3], inputs_name[3], current_outputs)
    list_layer_inputs["key"] = inputs_name[3]
    current_inputs.append(inputs_name[3])
    mapper._check_input(graph, inputs_node[4], inputs_name[4], current_outputs)
    list_layer_inputs["value"] = inputs_name[4]
    current_inputs.append(inputs_name[4])
    graph.add_layer(
        "prim.assert",
        inputs=list_layer_inputs,
        outputs=[output_name + "_assert"],
        type="eq")
    layer_inputs["scale"] = inputs_name[3]
    layer_attrs["align_mode"] = 0
    graph.add_layer(
        "fluid.layers.interpolate",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
def aten_view(mapper, graph, node):
    """ 构造调整大小的PaddleLayer。

    TorchScript示例:
        %input.152 : Tensor = aten::view(%x.20, %430)
        参数含义:
        %input.152 (Tensor): 输出,view后的Tensor。
        %x.20 (Tensor): 需要view的Tensor。
        %430 (list): 形状大小组成的list。

    【注意】view 函数只能用于contiguous后的Tensor上,
          也就是只能用于内存中连续存储的Tensor。
          如果对Tensor调用过transpose,permute等操作的话会使该Tensor在内存中变得不再连续,
          此时就不能再调用view函数。因此,需要先使用contiguous来返回一个contiguous copy。
          reshape则不需要依赖目标Tensor是否在内存中是连续的。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%x.20
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["x"] = inputs_name[0]
    # 获取当前节点输入、输出的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%430
    if inputs_name[1] in mapper.attrs:
        layer_attrs["shape"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
        layer_inputs["shape"] = inputs_name[1]
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "fluid.layers.reshape",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs


S
SunAhong1993 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
def aten_warn(mapper, graph, node):
    """ 构造warning的PaddleLayer。

    TorchScript示例:
        = aten::warn(%3, %2)
        参数含义:
        %3 (str): warning的提示字符串。
        %2 (int): warning的stacklevel。
    """
    output_name = mapper._get_outputs_name(node)[0]
    layer_outputs = [output_name]
    layer_inputs = {}
    layer_attrs = {}
    inputs_name, inputs_node = mapper._get_inputs_name(node)
    # 获取当前节点输出的list
    current_outputs = [output_name]
    # 处理输入0,即%3
    mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs)
    layer_inputs["input"] = inputs_name[0]
    # 获取当前节点输入的list
    current_inputs = list(layer_inputs.values())
    # 处理输入1,即%2
    if inputs_name[1] in mapper.attrs:
        layer_attrs["stacklevel"] = mapper.attrs[inputs_name[1]]
    else:
        mapper._check_input(graph, inputs_node[1], inputs_name[1],
                            current_outputs)
1894
        layer_inputs["stacklevel"] = inputs_name[1]
S
SunAhong1993 已提交
1895 1896 1897 1898 1899 1900 1901 1902
        current_inputs.append(inputs_name[1])

    graph.add_layer(
        "prim.warnings",
        inputs=layer_inputs,
        outputs=layer_outputs,
        **layer_attrs)
    return current_inputs, current_outputs