paddle_op_mapper.py 32.5 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
jiangjiajun 已提交
15
import math
J
jiangjiajun 已提交
16
import sys
J
jiangjiajun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb


class PaddleOpMapper(object):
    def __init__(self):
        self.paddle_onnx_dtype_map = {
            core.VarDesc.VarType.FP32: onnx_pb.TensorProto.FLOAT,
            core.VarDesc.VarType.FP64: onnx_pb.TensorProto.DOUBLE,
            core.VarDesc.VarType.INT32: onnx_pb.TensorProto.INT32,
            core.VarDesc.VarType.INT16: onnx_pb.TensorProto.INT16,
            core.VarDesc.VarType.INT16: onnx_pb.TensorProto.UINT16,
            core.VarDesc.VarType.INT64: onnx_pb.TensorProto.INT64,
            core.VarDesc.VarType.BOOL: onnx_pb.TensorProto.BOOL
        }

        self.name_counter = dict()

J
jiangjiajun 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def convert(self, program, save_dir):
        weight_nodes = self.convert_weights(program)
        op_nodes = list()
        input_nodes = list()
        output_nodes = list()

        unsupported_ops = set()

        print("Translating PaddlePaddle to ONNX...\n")
        for block in program.blocks:
            for i, op in enumerate(block.ops):
                sys.stdout.write(
                    "\rTotal:{}, Current:{} : {}                   ".format(
                        len(block.ops), i + 1, op.type))
                sys.stdout.flush()
                if not hasattr(self, op.type):
                    unsupported_ops.add(op.type)
                    continue
                if len(unsupported_ops) > 0:
                    continue
                node = getattr(self, op.type)(op, block)
                if op.type == 'feed':
                    input_nodes.append(node)
                elif op.type == 'fetch':
                    output_nodes.append(node)
                else:
                    if isinstance(node, list):
                        op_nodes = op_nodes + node
                    else:
                        op_nodes.append(node)

        if len(unsupported_ops) > 0:
            print("\nThere's {} ops are not supported yet".format(
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("=========== {} ===========".format(op))
            return

        graph = helper.make_graph(
            nodes=weight_nodes + op_nodes,
            name='onnx_model_from_paddle',
            initializer=[],
            inputs=input_nodes,
            outputs=output_nodes)
        model = helper.make_model(graph, producer_name='X2Paddle')
        onnx.checker.check_model(model)

        if not os.path.isdir(save_dir):
            os.makedirs(save_dir)
        with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
            f.write(model.SerializeToString())
        print("\nTranslated model saved in {}".format(
            os.path.join(save_dir, 'x2paddle_model.onnx')))

J
jiangjiajun 已提交
94 95 96 97 98 99 100 101
    def get_name(self, op_name, var_name):
        name = 'p2o.{}.{}'.format(op_name, var_name)
        if name not in self.name_counter:
            self.name_counter[name] = 0
        else:
            self.name_counter[name] += 1
        return name + '.{}'.format(self.name_counter[name])

J
jiangjiajun 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    def convert_weights(self, program):
        var_names = program.global_block().vars
        nodes = list()
        for name in var_names:
            var = program.global_block().var(name)
            if name.endswith('feed') or name.endswith('fetch'):
                continue
            if not var.persistable:
                continue
            weight = np.array(fluid.global_scope().find_var(name).get_tensor())
            tensor = helper.make_tensor(
                name=name,
                dims=var.shape,
                data_type=self.paddle_onnx_dtype_map[var.dtype],
                vals=weight.flatten().tolist())
            node = helper.make_node(
                'Constant', inputs=[], outputs=[name], value=tensor)
            nodes.append(node)
        return nodes

J
jiangjiajun 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def make_constant_node(self, name, dtype, value=None):
        if isinstance(value, list):
            dims = (len(value), )
        elif value is None:
            dims = ()
            value = []
        else:
            dims = ()
            value = [value]
        tensor = helper.make_tensor(
            name=name, data_type=dtype, dims=dims, vals=value)
        node = helper.make_node(
            'Constant', inputs=[], outputs=[name], value=tensor)
        return node

    def conv2d(self, op, block):
        kernel_shape = block.var(op.input('Filter')[0]).shape
        node = helper.make_node(
            'Conv',
            inputs=op.input('Input') + op.input('Filter'),
            outputs=op.output('Output'),
            dilations=op.attr('dilations'),
            kernel_shape=kernel_shape[-2:],
            strides=op.attr('strides'),
            group=op.attr('groups'),
            pads=op.attr('paddings') + op.attr('paddings'))
        return node

J
jiangjiajun 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
    def conv2d_transpose(self, op, block):
        kernel_shape = block.var(op.input('Filter')[0]).shape
        node = helper.make_node(
            'ConvTranspose',
            inputs=op.input('Input') + op.input('Filter'),
            outputs=op.output('Output'),
            dilations=op.attr('dilations'),
            kernel_shape=kernel_shape[-2:],
            strides=op.attr('strides'),
            group=1,
            pads=op.attr('paddings') + op.attr('paddings'))
        return node

J
jiangjiajun 已提交
163 164 165 166 167
    def relu(self, op, block):
        node = helper.make_node(
            'Relu', inputs=op.input('X'), outputs=op.output('Out'))
        return node

168 169 170 171 172
    def sigmoid(self, op, block):
        node = helper.make_node(
            'Sigmoid', inputs=op.input('X'), outputs=op.output('Out'))
        return node

J
jiangjiajun 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185
    def exp(self, op, block):
        node = helper.make_node(
            'Exp', inputs=op.input('X'), outputs=op.output('Out'))
        return node

    def leaky_relu(self, op, block):
        node = helper.make_node(
            'LeakyRelu',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            alpha=op.attr('alpha'))
        return node

J
jiangjiajun 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def elementwise_add(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Add',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Add',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_add")

J
jiangjiajun 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    def elementwise_sub(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Sub',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Sub',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_sub")

J
jiangjiajun 已提交
244 245 246 247 248 249 250 251 252 253 254 255
    def pool2d(self, op, block):
        pool_type = {
            'max': ('MaxPool', 'GlobalMaxPool'),
            'avg': ('AveragePool', 'GlobalAveragePool')
        }
        if op.attr('global_pooling'):
            node = helper.make_node(
                pool_type[op.attr('pooling_type')][1],
                inputs=op.input('X'),
                outputs=op.output('Out'),
            )
        else:
J
jiangjiajun 已提交
256 257 258 259 260 261 262
            input_shape = block.var(op.input('X')[0]).shape
            k_size = op.attr('ksize')
            paddings = op.attr('paddings')
            if input_shape[2] > 0 and input_shape[2] + paddings[0] < k_size[0]:
                k_size[0] = input_shape[2] + paddings[0]
            if input_shape[3] > 0 and input_shape[3] + paddings[1] < k_size[1]:
                k_size[1] = input_shape[3] + paddings[1]
J
jiangjiajun 已提交
263 264 265 266
            node = helper.make_node(
                pool_type[op.attr('pooling_type')][0],
                inputs=op.input('X'),
                outputs=op.output('Out'),
J
jiangjiajun 已提交
267
                kernel_shape=k_size,
J
jiangjiajun 已提交
268 269 270 271 272
                strides=op.attr('strides'),
                pads=op.attr('paddings') + op.attr('paddings'))
        return node

    def softmax(self, op, block):
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        axis = op.attr('axis')
        shape = block.var(op.output('Out')[0]).shape
        if axis < 0:
            axis += len(shape)
        if axis == len(shape) - 1:
            node = helper.make_node(
                'Softmax',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'))
            return node
        else:
            perm = [i for i in range(len(shape))]
            perm[-1] = axis
            perm[axis] = len(shape) - 1
            transpose_name0 = self.get_name(op.type, 'transpose')
            transpose_node0 = helper.make_node(
                'Transpose',
                inputs=op.input('X'),
                outputs=[transpose_name0],
                perm=perm)
            softmax_name = self.get_name(op.type, 'softmax')
            softmax_node = helper.make_node(
                'Softmax',
                inputs=[transpose_name0],
                outputs=[softmax_name],
                axis=-1)
            transpose_name1 = self.get_name(op.type, 'transpose')
            transpose_node1 = helper.make_node(
                'Transpose',
                inputs=[softmax_name],
                outputs=op.output('Out'),
                perm=perm)
            return [transpose_node0, softmax_node, transpose_node1]
J
jiangjiajun 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433

    def scale(self, op, block):
        scale = op.attr('scale')
        bias = op.attr('bias')
        if math.fabs(scale - 1.0) < 1e-06 and math.fabs(bias - 0.0) < 1e-06:
            node = helper.make_node(
                'Identity', inputs=op.input('X'), outputs=op.output('Out'))
            return node
        else:
            scale_name = self.get_name(op.type, 'scale')
            bias_name = self.get_name(op.type, 'bias')
            scale_node = self.make_constant_node(
                scale_name, onnx_pb.TensorProto.FLOAT, scale)
            bias_node = self.make_constant_node(bias_name,
                                                onnx_pb.TensorProto.FLOAT, bias)
            temp_tensor_name = self.get_name(op.type, 'temporary')
            if op.attr('bias_after_scale'):
                node1 = helper.make_node(
                    'Mul',
                    inputs=[scale_name, op.input('X')[0]],
                    outputs=[temp_tensor_name])
                node2 = helper.make_node(
                    'Add',
                    inputs=[bias_name, temp_tensor_name],
                    outputs=op.output('Out'))
            else:
                node1 = helper.make_node(
                    'Add',
                    inputs=[bias_name, op.input('X')[0]],
                    outputs=temp_tensor_name)
                node2 = helper.make_node(
                    'Mul',
                    inputs=[scale_name, temp_tensor_name],
                    outputs=[op.output('Out')])
            return [scale_node, bias_node, node1, node2]

    def mul(self, op, block):
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        out_shape = list(block.var(op.output('Out')[0]).shape)
        x_num_col_dims = op.attr('x_num_col_dims')
        y_num_col_dims = op.attr('y_num_col_dims')
        flatten_x_name = 'flatten_{}'.format(op.input('X')[0])
        flatten_y_name = 'flatten_{}'.format(op.input('Y')[0])
        shape_name = 'temp_shape_{}'.format(op.output('Out')[0])
        temp_out_name = 'temp_{}'.format(op.output('Out')[0])
        flatten_x = helper.make_node(
            'Flatten',
            inputs=op.input('X'),
            outputs=[flatten_x_name],
            axis=x_num_col_dims)
        flatten_y = helper.make_node(
            'Flatten',
            inputs=op.input('Y'),
            outputs=[flatten_y_name],
            axis=y_num_col_dims)
        shape_node = self.make_constant_node(
            shape_name, onnx_pb.TensorProto.INT64, out_shape)
        node = helper.make_node(
            'MatMul',
            inputs=[flatten_x_name, flatten_y_name],
            outputs=[temp_out_name])
        reshape_out = helper.make_node(
            'Reshape',
            inputs=[temp_out_name, shape_name],
            outputs=op.output('Out'))
        return [flatten_x, flatten_y, shape_node, node, reshape_out]

    def batch_norm(self, op, block):
        kwargs = {
            'epsilon': op.attr('epsilon'),
            'momentum': op.attr('momentum')
        }
        inputs = op.input('X') + op.input('Scale') + op.input(
            'Bias') + op.input('Mean') + op.input('Variance')
        node = helper.make_node(
            'BatchNormalization',
            inputs=inputs,
            outputs=op.output('Y'),
            **kwargs)
        return node

    def concat(self, op, block):
        node = helper.make_node(
            'Concat',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axis=op.attr('axis'))
        return node

    def depthwise_conv2d(self, op, block):
        return self.conv2d(op, block)

    def relu6(self, op, block):
        min_name = self.get_name(op.type, 'min')
        max_name = self.get_name(op.type, 'max')
        min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
                                           0)
        max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('threshold'))
        node = helper.make_node(
            'Clip',
            inputs=[op.input('X')[0], min_name, max_name],
            outputs=op.output('Out'),
        )
        return [min_node, max_node, node]

    def shape(self, op, block):
        node = helper.make_node(
            'Shape', inputs=op.input('Input'), outputs=op.output('Out'))
        return node

    def split(self, op, block):
        sections = op.attr('sections')
        if len(sections) > 0:
            node = helper.make_node(
                'Split',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'),
                split=sections)
        else:
            node = helper.make_node(
                'Split',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'))
J
jiangjiajun 已提交
434
        return node
J
jiangjiajun 已提交
435 436 437 438 439

    def slice(self, op, block):
        axes = op.attr('axes')
        starts = op.attr('starts')
        ends = op.attr('ends')
J
jiangjiajun 已提交
440 441 442 443 444 445 446 447 448 449
        axes_name = self.get_name(op.type, 'axes')
        starts_name = self.get_name(op.type, 'starts')
        ends_name = self.get_name(op.type, 'ends')

        axes_node = self.make_constant_node(axes_name,
                                            onnx_pb.TensorProto.INT64, axes)
        starts_node = self.make_constant_node(starts_name,
                                              onnx_pb.TensorProto.INT64, starts)
        ends_node = self.make_constant_node(ends_name,
                                            onnx_pb.TensorProto.INT64, ends)
J
jiangjiajun 已提交
450 451 452 453 454 455 456 457 458 459 460 461
        node = helper.make_node(
            "Slice",
            inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
            outputs=op.output('Out'),
        )
        return [starts_node, ends_node, axes_node, node]

    def fill_constant(self, op, block):
        value = op.attr('value')
        dtype = op.attr('dtype')
        shape = op.attr('shape')
        value = np.ones(shape) * value
J
jiangjiajun 已提交
462 463
        if dtype == 2:
            value = value.astype('int32')
J
jiangjiajun 已提交
464 465 466
        node = helper.make_node(
            'Constant',
            inputs=[],
J
jiangjiajun 已提交
467
            outputs=op.output('Out'),
J
jiangjiajun 已提交
468
            value=helper.make_tensor(
J
jiangjiajun 已提交
469
                name=op.output('Out')[0],
J
jiangjiajun 已提交
470 471 472 473 474 475 476 477 478 479
                data_type=self.paddle_onnx_dtype_map[dtype],
                dims=shape,
                vals=value.tolist()))
        return node

    def transpose2(self, op, block):
        node = helper.make_node(
            'Transpose',
            inputs=op.input('X'),
            outputs=op.output('Out'),
J
jiangjiajun 已提交
480
            perm=op.attr('axis'))
J
jiangjiajun 已提交
481 482 483 484
        return node

    def reshape2(self, op, block):
        input_names = op.input_names
J
jiangjiajun 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        if len(op.input('ShapeTensor')) > 1:
            cast_shape_nodes = list()
            cast_shape_names = list()
            for i in range(len(op.input('ShapeTensor'))):
                dim = op.input('ShapeTensor')[i]
                temp_name = self.get_name(op.type, 'shape.cast')
                node = helper.make_node(
                    'Cast',
                    inputs=[dim],
                    outputs=[temp_name],
                    to=onnx_pb.TensorProto.INT64)
                cast_shape_nodes.append(node)
                cast_shape_names.append(temp_name)

            temp_name = self.get_name(op.type, 'shape.concat')
            shape_node = helper.make_node(
                'Concat', inputs=cast_shape_names, outputs=[temp_name], axis=-1)
J
jiangjiajun 已提交
502 503
            node = helper.make_node(
                'Reshape',
J
jiangjiajun 已提交
504
                inputs=[op.input('X')[0], temp_name],
J
jiangjiajun 已提交
505
                outputs=op.output('Out'))
J
jiangjiajun 已提交
506
            return cast_shape_nodes + [shape_node, node]
J
jiangjiajun 已提交
507
        else:
J
jiangjiajun 已提交
508 509 510 511 512 513
            temp_name = self.get_name(op.type, 'shape.cast')
            cast_shape_node = helper.make_node(
                'Cast',
                inputs=op.input('ShapeTensor'),
                outputs=[temp_name],
                to=onnx_pb.TensorProto.INT64)
J
jiangjiajun 已提交
514 515
            node = helper.make_node(
                'Reshape',
J
jiangjiajun 已提交
516
                inputs=[op.input('X')[0], temp_name],
J
jiangjiajun 已提交
517
                outputs=op.output('Out'))
J
jiangjiajun 已提交
518
            return [cast_shape_node, node]
J
jiangjiajun 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

    def dropout(self, op, block):
        dropout_mode = op.attr('dropout_implementation')
        dropout_prob = op.attr('dropout_prob')
        if dropout_mode == 'upscale_in_train':
            node = helper.make_node(
                'Identity', inputs=op.input('X'), outputs=op.output('Out'))
            return node
        elif dropout_mode == 'downgrade_in_infer':
            scale_name = self.get_name(op.type, 'scale')
            scale_node = self.make_constant_node(
                scale_name, onnx_pb.TensorProto.FLOAT, 1 - dropout_prob)
            node = helper.make_node(
                "Mul",
                inputs=[op.input('X')[0], scale_name],
                outputs=op.output('Out'))
            return [scale_node, node]
        else:
            raise Exception("Unexpected situation happend")

    def reduce_mean(self, op, block):
        node = helper.make_node(
            'ReduceMean',
            inputs=op.input('X'),
            outputs=op.output('Out'),
J
jiangjiajun 已提交
544
            axes=op.attr('dim'),
J
jiangjiajun 已提交
545 546 547
            keepdims=op.attr('keep_dim'))
        return node

548 549 550 551 552
    def bilinear_interp(self, op, block):
        input_names = op.input_names
        coordinate_transformation_mode = 'half_pixel'
        if op.attr('align_corners'):
            coordinate_transformation_mode = 'align_corners'
J
jiangjiajun 已提交
553 554 555 556
        if ('OutSize' in input_names and len(op.input('OutSize')) > 0) or (
                'SizeTensor' in input_names
                and len(op.input('SizeTensor')) > 0):
            node_list = list()
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
            roi_node = self.make_constant_node(
                self.get_name(op.type, 'roi'), onnx_pb.TensorProto.FLOAT,
                [1, 1, 1, 1, 1, 1, 1, 1])
            roi_name = self.get_name(op.type, 'roi')
            roi_node = self.make_constant_node(
                roi_name, onnx_pb.TensorProto.FLOAT, [1, 1, 1, 1, 1, 1, 1, 1])
            empty_name = self.get_name(op.type, 'empty')
            empty_tensor = helper.make_tensor(
                empty_name,
                onnx_pb.TensorProto.FLOAT, (0, ),
                np.array([]).astype('float32'),
                raw=False)
            empty_node = helper.make_node(
                'Constant', [], outputs=[empty_name], value=empty_tensor)
            shape_name0 = self.get_name(op.type, 'shape')
            shape_node0 = helper.make_node(
                'Shape', inputs=op.input('X'), outputs=[shape_name0])
            starts_name = self.get_name(op.type, 'slice.starts')
            starts_node = self.make_constant_node(
                starts_name, onnx_pb.TensorProto.INT64, [0])
            ends_name = self.get_name(op.type, 'slice.ends')
            ends_node = self.make_constant_node(ends_name,
                                                onnx_pb.TensorProto.INT64, [2])
            shape_name1 = self.get_name(op.type, 'shape')
            shape_node1 = helper.make_node(
                'Slice',
                inputs=[shape_name0, starts_name, ends_name],
                outputs=[shape_name1])
J
jiangjiajun 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
            node_list.extend([
                roi_node, empty_node, shape_node0, starts_node, ends_node,
                shape_node1
            ])
            #            shape_name2 = self.get_name(op.type, "shape.cast")
            #            shape_node2 = helper.make_node(
            #                'Cast',
            #                inputs=op.input('OutSize'),
            #                outputs=[shape_name2],
            #                to=onnx_pb.TensorProto.INT64)
            if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
                cast_shape_name = self.get_name(op.type, "shape.cast")
                cast_shape_node = helper.make_node(
                    'Cast',
                    inputs=op.input('OutSize'),
                    outputs=[cast_shape_name],
                    to=onnx_pb.TensorProto.INT64)
                node_list.append(cast_shape_node)
            else:
                concat_shape_name = self.get_name(op.type, "shape.concat")
                concat_shape_node = helper.make_node(
                    "Concat",
                    inputs=op.input('SizeTensor'),
                    outputs=[concat_shape_name],
                    axis=0)
                cast_shape_name = self.get_name(op.type, "shape.cast")
                cast_shape_node = helper.make_node(
                    'Cast',
                    inputs=[concat_shape_name],
                    outputs=[cast_shape_name],
                    to=onnx_pb.TensorProto.INT64)
                node_list.extend([concat_shape_node, cast_shape_node])
617 618 619
            shape_name3 = self.get_name(op.type, "shape.concat")
            shape_node3 = helper.make_node(
                'Concat',
J
jiangjiajun 已提交
620
                inputs=[shape_name1, cast_shape_name],
621 622 623 624 625 626 627 628
                outputs=[shape_name3],
                axis=0)
            result_node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], roi_name, empty_name, shape_name3],
                outputs=op.output('Out'),
                mode='linear',
                coordinate_transformation_mode=coordinate_transformation_mode)
J
jiangjiajun 已提交
629 630
            node_list.extend([shape_node3, result_node])
            return node_list
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0],
                        op.input('Scale')[0]],
                outputs=op.output('Out'),
                mode='linear',
                coordinate_transformation_mode=coordinate_transformation_mode)
        else:
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(
                    scale_name, onnx_pb.TensorProto.FLOAT, [1, 1, scale, scale])
                roi_name = self.get_name(op.type, 'roi')
                roi_node = self.make_constant_node(roi_name,
                                                   onnx_pb.TensorProto.FLOAT,
                                                   [1, 1, 1, 1, 1, 1, 1, 1])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], roi_name, scale_name],
                    outputs=op.output('Out'),
                    mode='nearest',
                    coordinate_transformation_mode=coordinate_transformation_mode
                )
                return [scale_node, roi_node, node]
            else:
                raise Exception("Unexpected situation happend")
        return node

J
jiangjiajun 已提交
662 663
    def nearest_interp(self, op, block):
        input_names = op.input_names
J
jiangjiajun 已提交
664 665 666
        coordinate_transformation_mode = 'half_pixel'
        if op.attr('align_corners'):
            coordinate_transformation_mode = 'align_corners'
J
jiangjiajun 已提交
667 668 669 670 671
        if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], '',
                        op.input('OutSize')[0]],
J
jiangjiajun 已提交
672 673 674
                outputs=op.output('Out'),
                mode='nearest',
                coordinate_transformation_mode=coordinate_transformation_mode)
J
jiangjiajun 已提交
675 676 677 678 679
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0],
                        op.input('Scale')[0]],
J
jiangjiajun 已提交
680 681 682
                outputs=op.output('Out'),
                mode='nearest',
                coordinate_transformation_mode=coordinate_transformation_mode)
J
jiangjiajun 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
        else:
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(
                    scale_name, onnx_pb.TensorProto.FLOAT, [1, 1, scale, scale])
                roi_name = self.get_name(op.type, 'roi')
                roi_node = self.make_constant_node(roi_name,
                                                   onnx_pb.TensorProto.FLOAT,
                                                   [1, 1, 1, 1, 1, 1, 1, 1])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], roi_name, scale_name],
                    outputs=op.output('Out'),
J
jiangjiajun 已提交
698 699 700
                    mode='nearest',
                    coordinate_transformation_mode=coordinate_transformation_mode
                )
J
jiangjiajun 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
                return [scale_node, roi_node, node]
            else:
                raise Exception("Unexpected situation happend")
        return node

    def hard_sigmoid(self, op, block):
        slope = op.attr('slope')
        offset = op.attr('offset')
        node = helper.make_node(
            'HardSigmoid',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            alpha=slope,
            beta=offset)
        return node

J
jiangjiajun 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    def hard_swish(self, op, block):
        min_name = self.get_name(op.type, 'min')
        max_name = self.get_name(op.type, 'max')
        scale_name = self.get_name(op.type, 'scale')
        offset_name = self.get_name(op.type, 'offset')
        min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
                                           0)
        max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('threshold'))
        scale_node = self.make_constant_node(scale_name,
                                             onnx_pb.TensorProto.FLOAT,
                                             op.attr('scale'))
        offset_node = self.make_constant_node(offset_name,
                                              onnx_pb.TensorProto.FLOAT,
                                              op.attr('offset'))

        name0 = self.get_name(op.type, 'add')
        node0 = helper.make_node(
            'Add', inputs=[op.input('X')[0], offset_name], outputs=[name0])
        name1 = self.get_name(op.type, 'relu')
        node1 = helper.make_node(
            'Clip',
            inputs=[name0, min_name, max_name],
            outputs=[name1],
        )
        name2 = self.get_name(op.type, 'mul')
        node2 = helper.make_node(
            'Mul', inputs=[op.input('X')[0], name1], outputs=[name2])
        node3 = helper.make_node(
            'Div', inputs=[name2, scale_name], outputs=op.output('Out'))
        return [
            min_node, max_node, scale_node, offset_node, node0, node1, node2,
            node3
        ]

J
jiangjiajun 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
    def elementwise_mul(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Mul',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Mul',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_add")
        return node

    def feed(self, op, block):
        name = op.output('Out')[0]
        var = block.var(name)
        tensor_info = helper.make_tensor_value_info(
            name=name,
            shape=var.shape,
            elem_type=self.paddle_onnx_dtype_map[var.dtype])
        return tensor_info

    def fetch(self, op, block):
        name = op.input('X')[0]
        var = block.var(name)
        tensor_info = helper.make_tensor_value_info(
            name=name,
            shape=var.shape,
            elem_type=self.paddle_onnx_dtype_map[var.dtype])
        return tensor_info

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    def unsqueeze2(self, op, block):
        node = helper.make_node(
            'Unsqueeze',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axes=op.attr('axes'))
        return node

    def arg_max(self, op, block):
        node = helper.make_node(
            'ArgMax',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axis=op.attr('axis'),
            keepdims=0)
        return node

J
jiangjiajun 已提交
817 818 819 820 821 822
    def reciprocal(self, op, block):
        inputs = op.input(op.input_names[0])
        outputs = op.output(op.output_names[0])
        node = helper.make_node('Reciprocal', inputs=inputs, outputs=outputs)
        return node

J
jiangjiajun 已提交
823 824 825
    def im2sequence(self, op, block):
        from .paddle_custom_layer.im2sequence import im2sequence
        return im2sequence(op, block)