paddle_op_mapper.py 20.9 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

J
jiangjiajun 已提交
15
import math
J
jiangjiajun 已提交
16
import sys
J
jiangjiajun 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
import x2paddle
import os
import numpy as np
import paddle.fluid.core as core
import paddle.fluid as fluid
import onnx
from onnx import helper, onnx_pb


class PaddleOpMapper(object):
    def __init__(self):
        self.paddle_onnx_dtype_map = {
            core.VarDesc.VarType.FP32: onnx_pb.TensorProto.FLOAT,
            core.VarDesc.VarType.FP64: onnx_pb.TensorProto.DOUBLE,
            core.VarDesc.VarType.INT32: onnx_pb.TensorProto.INT32,
            core.VarDesc.VarType.INT16: onnx_pb.TensorProto.INT16,
            core.VarDesc.VarType.INT16: onnx_pb.TensorProto.UINT16,
            core.VarDesc.VarType.INT64: onnx_pb.TensorProto.INT64,
            core.VarDesc.VarType.BOOL: onnx_pb.TensorProto.BOOL
        }

        self.name_counter = dict()

    def get_name(self, op_name, var_name):
        name = 'p2o.{}.{}'.format(op_name, var_name)
        if name not in self.name_counter:
            self.name_counter[name] = 0
        else:
            self.name_counter[name] += 1
        return name + '.{}'.format(self.name_counter[name])

    def make_constant_node(self, name, dtype, value=None):
        if isinstance(value, list):
            dims = (len(value), )
        elif value is None:
            dims = ()
            value = []
        else:
            dims = ()
            value = [value]
        tensor = helper.make_tensor(
            name=name, data_type=dtype, dims=dims, vals=value)
        node = helper.make_node(
            'Constant', inputs=[], outputs=[name], value=tensor)
        return node

    def conv2d(self, op, block):
        kernel_shape = block.var(op.input('Filter')[0]).shape
        node = helper.make_node(
            'Conv',
            inputs=op.input('Input') + op.input('Filter'),
            outputs=op.output('Output'),
            dilations=op.attr('dilations'),
            kernel_shape=kernel_shape[-2:],
            strides=op.attr('strides'),
            group=op.attr('groups'),
            pads=op.attr('paddings') + op.attr('paddings'))
        return node

    def relu(self, op, block):
        node = helper.make_node(
            'Relu', inputs=op.input('X'), outputs=op.output('Out'))
        return node

    def elementwise_add(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Add',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Add',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_add")

    def pool2d(self, op, block):
        pool_type = {
            'max': ('MaxPool', 'GlobalMaxPool'),
            'avg': ('AveragePool', 'GlobalAveragePool')
        }
        if op.attr('global_pooling'):
            node = helper.make_node(
                pool_type[op.attr('pooling_type')][1],
                inputs=op.input('X'),
                outputs=op.output('Out'),
            )
        else:
            node = helper.make_node(
                pool_type[op.attr('pooling_type')][0],
                inputs=op.input('X'),
                outputs=op.output('Out'),
                kernel_shape=op.attr('ksize'),
                strides=op.attr('strides'),
                pads=op.attr('paddings') + op.attr('paddings'))
        return node

    def softmax(self, op, block):
        node = helper.make_node(
            'Softmax',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axis=op.attr('axis'))
        return node

    def scale(self, op, block):
        scale = op.attr('scale')
        bias = op.attr('bias')
        if math.fabs(scale - 1.0) < 1e-06 and math.fabs(bias - 0.0) < 1e-06:
            node = helper.make_node(
                'Identity', inputs=op.input('X'), outputs=op.output('Out'))
            return node
        else:
            scale_name = self.get_name(op.type, 'scale')
            bias_name = self.get_name(op.type, 'bias')
            scale_node = self.make_constant_node(
                scale_name, onnx_pb.TensorProto.FLOAT, scale)
            bias_node = self.make_constant_node(bias_name,
                                                onnx_pb.TensorProto.FLOAT, bias)
            temp_tensor_name = self.get_name(op.type, 'temporary')
            if op.attr('bias_after_scale'):
                node1 = helper.make_node(
                    'Mul',
                    inputs=[scale_name, op.input('X')[0]],
                    outputs=[temp_tensor_name])
                node2 = helper.make_node(
                    'Add',
                    inputs=[bias_name, temp_tensor_name],
                    outputs=op.output('Out'))
            else:
                node1 = helper.make_node(
                    'Add',
                    inputs=[bias_name, op.input('X')[0]],
                    outputs=temp_tensor_name)
                node2 = helper.make_node(
                    'Mul',
                    inputs=[scale_name, temp_tensor_name],
                    outputs=[op.output('Out')])
            return [scale_node, bias_node, node1, node2]

    def mul(self, op, block):
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        out_shape = list(block.var(op.output('Out')[0]).shape)
        x_num_col_dims = op.attr('x_num_col_dims')
        y_num_col_dims = op.attr('y_num_col_dims')
        flatten_x_name = 'flatten_{}'.format(op.input('X')[0])
        flatten_y_name = 'flatten_{}'.format(op.input('Y')[0])
        shape_name = 'temp_shape_{}'.format(op.output('Out')[0])
        temp_out_name = 'temp_{}'.format(op.output('Out')[0])
        flatten_x = helper.make_node(
            'Flatten',
            inputs=op.input('X'),
            outputs=[flatten_x_name],
            axis=x_num_col_dims)
        flatten_y = helper.make_node(
            'Flatten',
            inputs=op.input('Y'),
            outputs=[flatten_y_name],
            axis=y_num_col_dims)
        shape_node = self.make_constant_node(
            shape_name, onnx_pb.TensorProto.INT64, out_shape)
        node = helper.make_node(
            'MatMul',
            inputs=[flatten_x_name, flatten_y_name],
            outputs=[temp_out_name])
        reshape_out = helper.make_node(
            'Reshape',
            inputs=[temp_out_name, shape_name],
            outputs=op.output('Out'))
        return [flatten_x, flatten_y, shape_node, node, reshape_out]

    def batch_norm(self, op, block):
        kwargs = {
            'epsilon': op.attr('epsilon'),
            'momentum': op.attr('momentum')
        }
        inputs = op.input('X') + op.input('Scale') + op.input(
            'Bias') + op.input('Mean') + op.input('Variance')
        node = helper.make_node(
            'BatchNormalization',
            inputs=inputs,
            outputs=op.output('Y'),
            **kwargs)
        return node

    def concat(self, op, block):
        node = helper.make_node(
            'Concat',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            axis=op.attr('axis'))
        return node

    def depthwise_conv2d(self, op, block):
        return self.conv2d(op, block)

    def relu6(self, op, block):
        min_name = self.get_name(op.type, 'min')
        max_name = self.get_name(op.type, 'max')
        min_node = self.make_constant_node(min_name, onnx_pb.TensorProto.FLOAT,
                                           0)
        max_node = self.make_constant_node(max_name, onnx_pb.TensorProto.FLOAT,
                                           op.attr('threshold'))
        node = helper.make_node(
            'Clip',
            inputs=[op.input('X')[0], min_name, max_name],
            outputs=op.output('Out'),
        )
        return [min_node, max_node, node]

    def shape(self, op, block):
        node = helper.make_node(
            'Shape', inputs=op.input('Input'), outputs=op.output('Out'))
        return node

    def split(self, op, block):
        sections = op.attr('sections')
        if len(sections) > 0:
            node = helper.make_node(
                'Split',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'),
                split=sections)
        else:
            node = helper.make_node(
                'Split',
                inputs=op.input('X'),
                outputs=op.output('Out'),
                axis=op.attr('axis'))
J
jiangjiajun 已提交
265
        return node
J
jiangjiajun 已提交
266 267 268 269 270

    def slice(self, op, block):
        axes = op.attr('axes')
        starts = op.attr('starts')
        ends = op.attr('ends')
J
jiangjiajun 已提交
271 272 273 274 275 276 277 278 279 280
        axes_name = self.get_name(op.type, 'axes')
        starts_name = self.get_name(op.type, 'starts')
        ends_name = self.get_name(op.type, 'ends')

        axes_node = self.make_constant_node(axes_name,
                                            onnx_pb.TensorProto.INT64, axes)
        starts_node = self.make_constant_node(starts_name,
                                              onnx_pb.TensorProto.INT64, starts)
        ends_node = self.make_constant_node(ends_name,
                                            onnx_pb.TensorProto.INT64, ends)
J
jiangjiajun 已提交
281 282 283 284 285 286 287 288 289 290 291 292
        node = helper.make_node(
            "Slice",
            inputs=[op.input('Input')[0], starts_name, ends_name, axes_name],
            outputs=op.output('Out'),
        )
        return [starts_node, ends_node, axes_node, node]

    def fill_constant(self, op, block):
        value = op.attr('value')
        dtype = op.attr('dtype')
        shape = op.attr('shape')
        value = np.ones(shape) * value
J
jiangjiajun 已提交
293 294
        if dtype == 2:
            value = value.astype('int32')
J
jiangjiajun 已提交
295 296 297
        node = helper.make_node(
            'Constant',
            inputs=[],
J
jiangjiajun 已提交
298
            outputs=op.output('Out'),
J
jiangjiajun 已提交
299
            value=helper.make_tensor(
J
jiangjiajun 已提交
300
                name=op.output('Out')[0],
J
jiangjiajun 已提交
301 302 303 304 305 306 307 308 309 310
                data_type=self.paddle_onnx_dtype_map[dtype],
                dims=shape,
                vals=value.tolist()))
        return node

    def transpose2(self, op, block):
        node = helper.make_node(
            'Transpose',
            inputs=op.input('X'),
            outputs=op.output('Out'),
J
jiangjiajun 已提交
311
            perm=op.attr('axis'))
J
jiangjiajun 已提交
312 313 314 315
        return node

    def reshape2(self, op, block):
        input_names = op.input_names
J
jiangjiajun 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
        if len(op.input('ShapeTensor')) > 1:
            cast_shape_nodes = list()
            cast_shape_names = list()
            for i in range(len(op.input('ShapeTensor'))):
                dim = op.input('ShapeTensor')[i]
                temp_name = self.get_name(op.type, 'shape.cast')
                node = helper.make_node(
                    'Cast',
                    inputs=[dim],
                    outputs=[temp_name],
                    to=onnx_pb.TensorProto.INT64)
                cast_shape_nodes.append(node)
                cast_shape_names.append(temp_name)

            temp_name = self.get_name(op.type, 'shape.concat')
            shape_node = helper.make_node(
                'Concat', inputs=cast_shape_names, outputs=[temp_name], axis=-1)
J
jiangjiajun 已提交
333 334
            node = helper.make_node(
                'Reshape',
J
jiangjiajun 已提交
335
                inputs=[op.input('X')[0], temp_name],
J
jiangjiajun 已提交
336
                outputs=op.output('Out'))
J
jiangjiajun 已提交
337
            return cast_shape_nodes + [shape_node, node]
J
jiangjiajun 已提交
338
        else:
J
jiangjiajun 已提交
339 340 341 342 343 344
            temp_name = self.get_name(op.type, 'shape.cast')
            cast_shape_node = helper.make_node(
                'Cast',
                inputs=op.input('ShapeTensor'),
                outputs=[temp_name],
                to=onnx_pb.TensorProto.INT64)
J
jiangjiajun 已提交
345 346
            node = helper.make_node(
                'Reshape',
J
jiangjiajun 已提交
347
                inputs=[op.input('X')[0], temp_name],
J
jiangjiajun 已提交
348
                outputs=op.output('Out'))
J
jiangjiajun 已提交
349
            return [cast_shape_node, node]
J
jiangjiajun 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

    def dropout(self, op, block):
        dropout_mode = op.attr('dropout_implementation')
        dropout_prob = op.attr('dropout_prob')
        if dropout_mode == 'upscale_in_train':
            node = helper.make_node(
                'Identity', inputs=op.input('X'), outputs=op.output('Out'))
            return node
        elif dropout_mode == 'downgrade_in_infer':
            scale_name = self.get_name(op.type, 'scale')
            scale_node = self.make_constant_node(
                scale_name, onnx_pb.TensorProto.FLOAT, 1 - dropout_prob)
            node = helper.make_node(
                "Mul",
                inputs=[op.input('X')[0], scale_name],
                outputs=op.output('Out'))
            return [scale_node, node]
        else:
            raise Exception("Unexpected situation happend")

    def reduce_mean(self, op, block):
        node = helper.make_node(
            'ReduceMean',
            inputs=op.input('X'),
            outputs=op.output('Out'),
J
jiangjiajun 已提交
375
            axes=op.attr('dim'),
J
jiangjiajun 已提交
376 377 378 379 380
            keepdims=op.attr('keep_dim'))
        return node

    def nearest_interp(self, op, block):
        input_names = op.input_names
J
jiangjiajun 已提交
381 382 383
        coordinate_transformation_mode = 'half_pixel'
        if op.attr('align_corners'):
            coordinate_transformation_mode = 'align_corners'
J
jiangjiajun 已提交
384 385 386 387 388
        if 'OutSize' in input_names and len(op.input('OutSize')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0], '',
                        op.input('OutSize')[0]],
J
jiangjiajun 已提交
389 390 391
                outputs=op.output('Out'),
                mode='nearest',
                coordinate_transformation_mode=coordinate_transformation_mode)
J
jiangjiajun 已提交
392 393 394 395 396
        elif 'Scale' in input_names and len(op.input('Scale')) > 0:
            node = helper.make_node(
                'Resize',
                inputs=[op.input('X')[0],
                        op.input('Scale')[0]],
J
jiangjiajun 已提交
397 398 399
                outputs=op.output('Out'),
                mode='nearest',
                coordinate_transformation_mode=coordinate_transformation_mode)
J
jiangjiajun 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        else:
            out_shape = [op.attr('out_h'), op.attr('out_w')]
            scale = op.attr('scale')
            if out_shape.count(-1) > 0:
                scale_name = self.get_name(op.type, 'scale')
                scale_node = self.make_constant_node(
                    scale_name, onnx_pb.TensorProto.FLOAT, [1, 1, scale, scale])
                roi_name = self.get_name(op.type, 'roi')
                roi_node = self.make_constant_node(roi_name,
                                                   onnx_pb.TensorProto.FLOAT,
                                                   [1, 1, 1, 1, 1, 1, 1, 1])
                node = helper.make_node(
                    'Resize',
                    inputs=[op.input('X')[0], roi_name, scale_name],
                    outputs=op.output('Out'),
J
jiangjiajun 已提交
415 416 417
                    mode='nearest',
                    coordinate_transformation_mode=coordinate_transformation_mode
                )
J
jiangjiajun 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
                return [scale_node, roi_node, node]
            else:
                raise Exception("Unexpected situation happend")
        return node

    def hard_sigmoid(self, op, block):
        slope = op.attr('slope')
        offset = op.attr('offset')
        node = helper.make_node(
            'HardSigmoid',
            inputs=op.input('X'),
            outputs=op.output('Out'),
            alpha=slope,
            beta=offset)
        return node

    def elementwise_mul(self, op, block):
        axis = op.attr('axis')
        x_shape = block.var(op.input('X')[0]).shape
        y_shape = block.var(op.input('Y')[0]).shape
        if len(y_shape) == 1 and axis == 1:
            shape_name = self.get_name(op.type, 'shape')
            shape_value = [1] * len(x_shape)
            shape_value[axis] = y_shape[0]
            shape_node = self.make_constant_node(
                shape_name, onnx_pb.TensorProto.INT64, shape_value)
            temp_value = self.get_name(op.type, 'temp')
            y_node = helper.make_node(
                'Reshape',
                inputs=[op.input('Y')[0], shape_name],
                outputs=[temp_value])
            node = helper.make_node(
                'Mul',
                inputs=[op.input('X')[0], temp_value],
                outputs=op.output('Out'))
            return [shape_node, y_node, node]
        elif len(x_shape) == len(y_shape):
            node = helper.make_node(
                'Mul',
                inputs=[op.input('X')[0], op.input('Y')[0]],
                outputs=op.output('Out'))
            return node
        else:
            raise Excpetion("Unexpected situation happend in elementwise_add")
        return node

    def feed(self, op, block):
        name = op.output('Out')[0]
        var = block.var(name)
        tensor_info = helper.make_tensor_value_info(
            name=name,
            shape=var.shape,
            elem_type=self.paddle_onnx_dtype_map[var.dtype])
        return tensor_info

    def fetch(self, op, block):
        name = op.input('X')[0]
        var = block.var(name)
        tensor_info = helper.make_tensor_value_info(
            name=name,
            shape=var.shape,
            elem_type=self.paddle_onnx_dtype_map[var.dtype])
        return tensor_info

    def convert_weights(self, program):
        var_names = program.global_block().vars
        nodes = list()
        for name in var_names:
            var = program.global_block().var(name)
            if name.endswith('feed') or name.endswith('fetch'):
                continue
            if not var.persistable:
                continue
            weight = np.array(fluid.global_scope().find_var(name).get_tensor())
            tensor = helper.make_tensor(
                name=name,
                dims=var.shape,
                data_type=self.paddle_onnx_dtype_map[var.dtype],
                vals=weight.flatten().tolist())
            node = helper.make_node(
                'Constant', inputs=[], outputs=[name], value=tensor)
            nodes.append(node)
        return nodes

    def convert(self, program, save_dir):
        weight_nodes = self.convert_weights(program)
        op_nodes = list()
        input_nodes = list()
        output_nodes = list()

        unsupported_ops = set()

J
jiangjiajun 已提交
510
        print("Translating PaddlePaddle to ONNX...\n")
J
jiangjiajun 已提交
511
        for block in program.blocks:
J
jiangjiajun 已提交
512 513 514 515
            for i, op in enumerate(block.ops):
                sys.stdout.write(
                    "\rTotal:{}, Current:{} : {}                   ".format(
                        len(block.ops), i + 1, op.type))
J
jiangjiajun 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
                if not hasattr(self, op.type):
                    unsupported_ops.add(op.type)
                    continue
                if len(unsupported_ops) > 0:
                    continue
                node = getattr(self, op.type)(op, block)
                if op.type == 'feed':
                    input_nodes.append(node)
                elif op.type == 'fetch':
                    output_nodes.append(node)
                else:
                    if isinstance(node, list):
                        op_nodes = op_nodes + node
                    else:
                        op_nodes.append(node)

        if len(unsupported_ops) > 0:
J
jiangjiajun 已提交
533
            print("\nThere's {} ops are not supported yet".format(
J
jiangjiajun 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
                len(unsupported_ops)))
            for op in unsupported_ops:
                print("=========== {} ===========".format(op))
            return

        graph = helper.make_graph(
            nodes=weight_nodes + op_nodes,
            name='onnx_model_from_paddle',
            initializer=[],
            inputs=input_nodes,
            outputs=output_nodes)
        model = helper.make_model(graph, producer_name='X2Paddle')
        onnx.checker.check_model(model)

        if not os.path.isdir(save_dir):
            os.makedirs(save_dir)
        with open(os.path.join(save_dir, 'x2paddle_model.onnx'), 'wb') as f:
            f.write(model.SerializeToString())
J
jiangjiajun 已提交
552
        print("\nTranslated model saved in {}".format(
J
jiangjiajun 已提交
553
            os.path.join(save_dir, 'x2paddle_model.onnx')))