onnx_decoder.py 21.4 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
W
wjj19950828 已提交
16
from x2paddle.decoder.onnx_shape_inference import SymbolicShapeInference
C
update  
channingss 已提交
17 18
from onnx.checker import ValidationError
from onnx.checker import check_model
C
Channingss 已提交
19
from onnx import helper, shape_inference
C
update  
channingss 已提交
20 21 22 23
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from onnx.numpy_helper import to_array
C
channingss 已提交
24
from onnx import AttributeProto, TensorProto, GraphProto
C
update  
channingss 已提交
25 26
from collections import OrderedDict as Dict
import onnx
C
channingss 已提交
27
from onnx.helper import ValueInfoProto
C
update  
channingss 已提交
28 29
import numpy as np
from copy import deepcopy
C
channingss 已提交
30
import logging as _logging
C
channingss 已提交
31
import os
S
SunAhong1993 已提交
32
import copy
C
update  
channingss 已提交
33 34

default_op_domain = 'ai.onnx'
C
channingss 已提交
35
_logger = _logging.getLogger(__name__)
C
update  
channingss 已提交
36 37 38 39 40 41 42 43 44 45


class ONNXGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
            super(ONNXGraphNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphNode, self).__init__(layer, layer_name)
        self.layer_type = layer.op_type
        self.attr_map = self.get_attr_map()
C
channingss 已提交
46
        self.out_shapes = list()
C
update  
channingss 已提交
47
        self.dtype = None
C
channingss 已提交
48
        self.which_child = {}
C
update  
channingss 已提交
49

Y
yeliang2258 已提交
50 51 52 53 54 55 56 57 58 59 60 61
    def get_input_index(self, input_name):
        """
        get the index of input_name in layer.input
        -1 means input_name is not in the input
        """
        index = -1
        for i in range(len(self.layer.input)):
            if input_name == self.layer.input[i]:
                index = i
                break
        return index

C
update  
channingss 已提交
62 63 64 65 66
    def get_attr_map(self):
        """
        convert ONNX node attributes to dict
        """
        return {
67
            attr.name: self.get_attribute_value(attr)
C
update  
channingss 已提交
68 69 70 71 72
            for attr in self.layer.attribute
        }

    @property
    def value(self):
C
channingss 已提交
73 74 75
        assert 'Constant' in self.layer_type, "Only Constant | ConstantOfShape node has value."
        if 'value' not in self.attr_map:
            return None
C
channingss 已提交
76
        return self.attr_map['value']
S
SunAhong1993 已提交
77

S
SunAhong1993 已提交
78 79 80 81 82
    @property
    def name(self):
        if hasattr(self, 'index'):
            return "{}_p{}".format(self.layer_name, self.index)
        return self.layer_name
C
update  
channingss 已提交
83

84
    def get_attribute_value(self, attr):
C
update  
channingss 已提交
85 86 87 88 89 90
        """
        get_attribute_value enhanced
        """
        if attr.type == onnx.AttributeProto.TENSOR:
            dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
            data = attr.t.raw_data
91 92
            value = np.frombuffer(
                data, dtype=dtype, count=(len(data) // dtype.itemsize))
C
update  
channingss 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        elif attr.type == onnx.AttributeProto.STRING:
            value = attr.s
            value = value.decode() if isinstance(value, bytes) else value
        else:
            value = get_attribute_value(attr)
        return value

    def get_attr(self, name, default=None):
        """
        get_attribute_value from attr_map
        """
        if name not in self.attr_map:
            return default
        return self.attr_map[name]

C
Channingss 已提交
108
    def output(self, index=0):
S
SunAhong1993 已提交
109 110 111 112
        if index > 0 and len(self.layer.output) <= index:
            raise IndexError(
                'Output numbers of Node:{} is {} <= index:{}'.format(
                    self.layer_name, len(self.layer.output), index))
113
        return self.layer.output[index]
C
Channingss 已提交
114

C
update  
channingss 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128

class ONNXGraphDataNode(GraphNode):
    def __init__(self, layer, layer_name=None, is_global_input=False):
        if layer_name is None:
            super(ONNXGraphDataNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphDataNode, self).__init__(layer, layer_name)
        if is_global_input:
            self.layer_type = 'place_holder'
        else:
            self.layer_type = 'create_parameter'
        self.layer_name = layer_name
        self.weight = None
        self.embeded_as = None
C
channingss 已提交
129
        self.which_child = {}
C
update  
channingss 已提交
130 131 132

    @property
    def out_shapes(self):
C
channingss 已提交
133 134 135
        if isinstance(self.layer, ValueInfoProto):
            values = self.layer.type.tensor_type.shape.dim
            out_shapes = list()
S
SunAhong1993 已提交
136 137 138 139 140 141 142
            shape = list()
            for dim in values:
                if dim.dim_value == 0:
                    shape.append(-1)
                else:
                    shape.append(dim.dim_value)
            out_shapes.append(shape)
C
channingss 已提交
143
            return out_shapes
S
SunAhong1993 已提交
144 145 146 147 148 149 150 151 152 153 154
        elif isinstance(self.layer, TensorProto):
            values = self.layer.dims
            out_shapes = list()
            shape = list()
            for dim in values:
                if dim == 0:
                    shape.append(-1)
                else:
                    shape.append(dim)
            out_shapes.append(shape)
            return out_shapes
C
channingss 已提交
155 156 157 158 159
        else:
            values = self.layer.dims
            out_shapes = list()
            out_shapes.append(values)
            return out_shapes
S
SunAhong1993 已提交
160

S
SunAhong1993 已提交
161 162 163
    @property
    def name(self):
        return self.layer_name
C
update  
channingss 已提交
164 165 166

    @property
    def dtype(self):
C
channingss 已提交
167 168 169 170 171 172
        if isinstance(self.layer, ValueInfoProto):
            dtype = self.layer.type.tensor_type.elem_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
        else:
            dtype = self.layer.data_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
C
update  
channingss 已提交
173 174 175


class ONNXGraph(Graph):
176
    def __init__(self, onnx_model, input_shape_dict):
177 178
        super(ONNXGraph, self).__init__(onnx_model)
        self.fixed_input_shape = {}
179 180 181
        if input_shape_dict is not None:
            for k, v in eval(input_shape_dict).items():
                self.fixed_input_shape["x2paddle_" + k] = v
C
update  
channingss 已提交
182 183
        self.initializer = {}
        self.place_holder_nodes = list()
184 185
        self.value_infos = {}
        self.graph = onnx_model.graph
C
update  
channingss 已提交
186
        self.get_place_holder_nodes()
W
wjj19950828 已提交
187
        print("Shape inferencing ...")
W
wjj19950828 已提交
188 189 190 191 192 193 194
        try:
            self.graph = SymbolicShapeInference.infer_shapes(
                onnx_model, fixed_input_shape=self.fixed_input_shape)
        except:
            print('[WARNING] Shape inference by ONNX offical interface.')
            onnx_model = shape_inference.infer_shapes(onnx_model)
            self.graph = onnx_model.graph
W
wjj19950828 已提交
195
        print("Shape inferenced.")
196 197 198
        self.build()
        self.collect_value_infos()
        self.allocate_shapes()
S
SunAhong1993 已提交
199
        self.graph_name = "ONNXModel"
C
update  
channingss 已提交
200 201 202 203 204 205

    def get_inner_nodes(self):
        """
        generate inner node of ONNX model
        """
        inner_nodes = []
206
        if not isinstance(self.graph, onnx.GraphProto):
C
update  
channingss 已提交
207 208
            logger.error('graph is not a GraphProto instance')
            return
209
        for initializer in self.graph.initializer:
C
update  
channingss 已提交
210 211 212 213
            name = initializer.name
            inner_nodes.append(name)
        return inner_nodes

214 215 216 217 218 219 220 221 222
    def get_symbolic_shape(self, dims):
        shape = []
        for dim in dims:
            if dim.HasField('dim_param'):
                shape.append(dim.dim_param)
            else:
                shape.append(dim.dim_value)
        return shape

C
update  
channingss 已提交
223 224 225 226 227
    def get_place_holder_nodes(self):
        """
        generate place_holder node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
228 229 230
        for ipt_vi in self.graph.input:
            if ipt_vi.name not in inner_nodes:
                self.place_holder_nodes.append(ipt_vi.name)
C
update  
channingss 已提交
231

C
channingss 已提交
232 233 234 235
    def get_output_nodes(self):
        """
        generate output_nodes node of ONNX model
        """
C
Channingss 已提交
236
        self.output_nodes = [value.name for value in self.graph.output]
C
channingss 已提交
237

C
update  
channingss 已提交
238 239 240 241 242 243 244 245 246 247 248 249
    def is_place_holder_nodes(self, layer):
        """
        return layer is or not place_holder node
        """
        if layer in self.place_holder_nodes:
            return True
        return False

    def build(self):
        """
        build topo_sort of ONNX model
        """
250
        for layer in self.graph.node:
C
channingss 已提交
251 252
            node = ONNXGraphNode(layer)
            self.node_map[layer.name] = node
C
update  
channingss 已提交
253

254
        for layer in self.graph.input:
C
update  
channingss 已提交
255 256 257 258 259 260
            if layer.name not in self.node_map:
                is_place_holder = self.is_place_holder_nodes(layer.name)
                self.node_map[layer.name] = ONNXGraphDataNode(
                    layer,
                    layer_name=layer.name,
                    is_global_input=is_place_holder)
C
channingss 已提交
261

C
update  
channingss 已提交
262
        #set data node's weight
263
        for initializer in self.graph.initializer:
C
channingss 已提交
264 265
            name = initializer.name
            weight = to_array(initializer)
C
update  
channingss 已提交
266 267 268 269
            if name in self.node_map:
                if isinstance(self.node_map[name], ONNXGraphDataNode):
                    self.node_map[name].weight = weight
                    self.node_map[name].embeded_as = []
C
channingss 已提交
270
            else:
271 272
                self.node_map[name] = ONNXGraphDataNode(
                    initializer, layer_name=name, is_global_input=False)
C
channingss 已提交
273 274
                self.node_map[name].weight = weight
                self.node_map[name].embeded_as = []
C
update  
channingss 已提交
275 276 277 278

        #generate connection between nodes for topo
        for layer_name, node in self.node_map.items():
            if isinstance(node, ONNXGraphNode):
279
                self.build_connection(layer_name, node)
C
channingss 已提交
280
        #generate topo
C
update  
channingss 已提交
281 282
        super(ONNXGraph, self).build()

S
SunAhong1993 已提交
283
        self.input_nodes = copy.deepcopy(self.place_holder_nodes)
C
update  
channingss 已提交
284

285 286 287 288 289 290 291 292 293
    def build_connection(self, layer_name, node):
        """
        find connection for nodes
        """
        for idx, in_node in enumerate(node.layer.input):
            if in_node == '':
                continue
            if in_node not in self.node_map:
                flag = 0
294
                for nd in self.graph.node:
295 296 297 298
                    for idx, opt in enumerate(nd.output):
                        if opt == in_node:
                            self.connect(nd.name, layer_name)
                            flag = 1
S
fix  
SunAhong1993 已提交
299 300 301 302 303
                            if nd.name in node.which_child:
                                for n_i, n_ipt in enumerate(node.inputs):
                                    if first_i == n_i:
                                        continue
                                    if n_ipt == nd.name:
S
SunAhong1993 已提交
304 305
                                        new_nd_name = "{}/{}".format(nd.name,
                                                                     n_i)
S
fix  
SunAhong1993 已提交
306 307 308 309 310
                                        if new_nd_name not in node.which_child:
                                            node.which_child[new_nd_name] = idx
                                            break
                            else:
                                first_i = node.inputs.index(nd.name)
311 312 313 314 315 316 317 318
                                # deal with Multiple outputs correspond to one node
                                if self.node_map[nd.name].outputs.count(
                                        layer_name) > 1:
                                    new_child_name = "{}/{}".format(nd.name,
                                                                    idx)
                                    node.which_child[new_child_name] = idx
                                else:
                                    node.which_child[nd.name] = idx
319 320 321 322 323 324 325 326 327 328 329
                            self.node_map[nd.name].index = 0
                            break
                    if flag == 1:
                        break
                if flag == 0:
                    raise Exception(
                        'input[{}] of node[{}] does not exist in node_map'.
                        format(in_node, layer_name))
            else:
                self.connect(in_node, layer_name)

C
channingss 已提交
330 331
    def get_input_node(self, node, idx=0, copy=False):
        if len(node.which_child) == 0:
C
channingss 已提交
332 333
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            return ipt_node
C
channingss 已提交
334 335
        else:
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
S
fix  
SunAhong1993 已提交
336 337 338 339 340 341
            new_ipt_name = "{}/{}".format(ipt_node.layer_name, idx)
            if new_ipt_name in node.which_child:
                ipt_node.index = node.which_child[new_ipt_name]
            else:
                if ipt_node.layer_name in node.which_child:
                    ipt_node.index = node.which_child[ipt_node.layer_name]
S
SunAhong1993 已提交
342

C
channingss 已提交
343
            return ipt_node
C
update  
channingss 已提交
344

345
    def graph_weights(self):
C
update  
channingss 已提交
346 347 348 349
        """
        generator for weights
        """

350
        if not isinstance(self.graph, onnx.GraphProto):
C
update  
channingss 已提交
351 352 353
            logger.error('graph is not a GraphProto instance')
            return

354
        for initializer in self.graph.initializer:
C
update  
channingss 已提交
355 356 357 358
            name = initializer.name
            weight = to_array(initializer)
            yield name, weight

359
    def collect_value_infos(self):
C
channingss 已提交
360 361 362
        """
        collect value/type info for an ONNX model
        """
363
        assert isinstance(self.graph,
C
channingss 已提交
364 365
                          onnx.GraphProto), 'model is not a ModelProto instance'

366 367
        for item in self.graph.value_info:
            self.value_infos[item.name] = {
C
channingss 已提交
368 369 370 371 372 373
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': False
            }
374 375 376 377 378 379 380 381 382 383 384 385 386

    def allocate_shapes(self):
        """
        run shape inference
        """
        for layer in self.graph.node:
            node = self.node_map[layer.name]
            for opt in layer.output:
                if opt in self.value_infos:
                    value_info = self.value_infos[opt]
                    #if len(value_info['shape']) == 0 or value_info[
                    #        'dtype'] is None or 0 in value_info['shape']:
                    #    #TODO add node shape inference
387 388 389 390 391
                    shape = value_info['shape']
                    for idx in range(len(shape)):
                        if shape[idx] == 0:
                            shape[idx] = -1
                    node.out_shapes.append(shape)
392 393 394
                    node.dtype = value_info['dtype']
                else:
                    node.out_shapes.append([])
C
channingss 已提交
395

C
update  
channingss 已提交
396 397

class ONNXDecoder(object):
398
    def __init__(self, onnx_model, input_shape_dict, enable_onnx_checker):
399
        onnx_model = onnx.load(onnx_model)
C
update  
channingss 已提交
400
        print('model ir_version: {}, op version: {}'.format(
401 402 403
            onnx_model.ir_version, onnx_model.opset_import[0].version))
        self.op_set = onnx_model.opset_import[0].version

W
wjj19950828 已提交
404 405
        if enable_onnx_checker:
            check_model(onnx_model)
406 407 408

        onnx_model = self.optimize_model_skip_op(onnx_model)
        onnx_model = self.optimize_node_name(onnx_model)
409
        self.graph = ONNXGraph(onnx_model, input_shape_dict)
C
update  
channingss 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

    def build_value_refs(self, nodes):
        """
        build op reference of inputs and outputs
        """
        input_refs = Dict()
        output_refs = Dict()
        for idx, node in enumerate(nodes):
            for val_name in node.input:
                input_refs.setdefault(val_name, set()).add(idx)
            for val_name in node.output:
                output_refs.setdefault(val_name, set()).add(idx)
        return input_refs, output_refs

    def skip_node_forward(self, nodes, src_output_name, dst_input_name,
                          input_refs):
        """
        skip nodes between src_output_name -> dst_input_name and connect this pair
        """
        processed = 0
        for next_idx in input_refs[src_output_name]:
            next_node = nodes[next_idx]
            for val_idx, next_input_name in enumerate(next_node.input):
                if next_input_name == src_output_name:
                    next_node.input[val_idx] = dst_input_name
                    processed += 1
        return processed

    def skip_node_backward(self, nodes, src_input_name, dst_output_name,
                           output_refs):
        """
        skip nodes between dst_output_name -> src_input_name and connect this pair
        """
        processed = 0
        for prev_idx in output_refs[src_input_name]:
            prev_node = nodes[prev_idx]
            for val_idx, prev_output_name in enumerate(prev_node.output):
                if prev_output_name == src_input_name:
                    prev_node.output[val_idx] = dst_output_name
                    processed += 1
        return processed

452
    def optimize_model_skip_op(self, model, op_list=None):
C
update  
channingss 已提交
453 454 455
        """
        skip ops can be bypassed for inference
        """
456
        nodes = model.graph.node
C
update  
channingss 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        if op_list is None:
            op_list = ['Dropout']
        input_refs, output_refs = self.build_value_refs(nodes)
        ret = type(model)()
        ret.CopyFrom(model)
        ret_nodes = ret.graph.node
        nodes_to_remove = []
        for node_idx, node in enumerate(nodes):
            if not (node.domain == default_op_domain or node.domain == ''):
                continue
            op_type = node.op_type
            if not (op_type in op_list):
                continue
            if op_type in ['Dropout']:
                input_name = node.input[0]
                output_name = node.output[0]
            elif not (len(node.input) == 1 and len(node.output) == 1):
                print(
                    'currently only 1-input-1-output op supported, skip required %d: %s',
                    node_idx, node.op_type)
                continue
            else:
                input_name = node.input[0]
                output_name = node.output[0]

            if output_name in input_refs:
                processed = self.skip_node_forward(ret_nodes, output_name,
                                                   input_name, input_refs)
            elif input_name in output_refs:
                processed = self.skip_node_backward(ret_nodes, input_name,
                                                    output_name, output_refs)
            else:
                processed = -1
            if processed > 0:
                nodes_to_remove.append(node_idx)
C
channingss 已提交
492 493 494 495 496
                for value_info in ret.graph.value_info:
                    for output in node.output:
                        if value_info.name == output:
                            ret.graph.value_info.remove(value_info)

C
update  
channingss 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                print('skip op {}: {} -> {} -> {}'.format(
                    node_idx, input_name, node.op_type, output_name))
            elif processed == 0:
                print('weird, no node processed')
            else:
                print('standalone op {}: {} -> {} -> {} not skipped'.format(
                    node_idx, input_name, node.op_type, output_name))

        nodes_to_remove.sort(reverse=True)
        for node_idx in nodes_to_remove:
            ret_nodes.pop(node_idx)
        return ret

    def optimize_model_strip_initializer(self, model, keep_input_only=True):
        """
        strip weights for inference
        """
        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        out_names = [val.name for val in model.graph.output]

        ret = type(model)()
        ret.CopyFrom(model)
        # strip initializers
        ret.graph.ClearField('initializer')
        ret_initializers = ret.graph.initializer
        for initializer in model.graph.initializer:
            name = initializer.name
            if name in input_refs:
                ret_initializers.add().CopyFrom(initializer)
            elif not keep_input_only and name in output_refs:
                ret_initializers.add().CopyFrom(initializer)
            else:
                dtype = TENSOR_TYPE_TO_NP_TYPE[initializer.data_type]

        # strip inputs
        ret.graph.ClearField('input')
        ret_inputs = ret.graph.input
        for item in model.graph.input:
            name = item.name
            if name in input_refs or name in out_names:
                ret_inputs.add().CopyFrom(item)
        return ret

    def make_variable_name(self, name):
        """
        make a valid code name for ParamAttr
        """
        if name == '':
            raise ValueError('name should not be empty')
W
WJJ1995 已提交
547
        for s in ' .*?\\/-:;':
C
update  
channingss 已提交
548
            name = name.replace(s, '_')
549 550
        return 'x2paddle_' + name

551
    def optimize_node_name(self, model):
C
update  
channingss 已提交
552 553 554
        """
        standardize variable name for paddle's code
        """
555
        graph = model.graph
C
update  
channingss 已提交
556 557 558 559 560 561 562 563 564
        for initializer in graph.initializer:
            initializer.name = self.make_variable_name(initializer.name)
        for ipt in graph.input:
            ipt.name = self.make_variable_name(ipt.name)
        for output in graph.output:
            output.name = self.make_variable_name(output.name)
        for item in graph.value_info:
            item.name = self.make_variable_name(item.name)
        for node in graph.node:
C
channingss 已提交
565
            node.name = node.output[0]
W
wjj19950828 已提交
566 567 568
            # Avoid topological sort errors caused by :: in the name
            if "::" in node.name and len(node.output) > 1:
                node.name = node.name.replace('::', '_')
W
wjj19950828 已提交
569 570
            if ":" in node.name and len(
                    node.output) > 1 and node.op_type != "LSTM":
W
WJJ1995 已提交
571
                node.name = node.name.split(':')[0]
C
update  
channingss 已提交
572 573
            node.name = self.make_variable_name(node.name)
            for i in range(len(node.input)):
574 575 576 577
                if node.input[i] == '':
                    continue
                else:
                    node.input[i] = self.make_variable_name(node.input[i])
C
update  
channingss 已提交
578 579
            for i in range(len(node.output)):
                node.output[i] = self.make_variable_name(node.output[i])
S
fix  
SunAhong1993 已提交
580
        return model