opset.py 95.8 KB
Newer Older
S
SunAhong1993 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
from x2paddle.core.graph import GraphNode
from x2paddle.core.util import *
from functools import reduce
import numpy as np
import onnx
import onnx.numpy_helper as numpy_helper
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
import logging as _logging
from collections import OrderedDict
import math
import os
import copy
import sys
import shutil

_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node, necessary=False):
    if 'Constant' in node.layer_type:
        return node.value
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
S
SunAhong1993 已提交
41
            node.name)
S
SunAhong1993 已提交
42 43 44
    return None


45 46 47 48 49
def _rename_or_remove_weight(weights,
                             origin_name,
                             target_name=None,
                             is_remove=True):
    '''
50 51 52 53
    Rename parameters by Paddle's naming rule of parameters.

    Args:
        weights(dict[String:np.ndarray]): Dict stored paramters, the key in weights is name of parameter.
54
        origin_name(String): Name of parameter to rename or remove.
55 56
        target_name(String, optional): if target_name is not None, add new key-value pair
            {target_name:weights[origin_name]} to weights, and target_name must follow paddle's
57
            naming rule of parameters. Default: None.
58 59 60
        is_remove: if is_remove is True, remove origin key-value pair. Default: True.
    Returns:
        None
61
    '''
C
Channingss 已提交
62 63
    if origin_name not in weights:
        raise KeyError('{} not a key in {}'.format(origin_name, weights))
C
Channingss 已提交
64
    if is_remove:
C
Channingss 已提交
65
        # remove weight
C
Channingss 已提交
66 67 68 69 70 71
        data = weights.pop(origin_name)
    else:
        data = weights[origin_name]
    if target_name is not None:
        # rename weight
        weights[target_name] = data
C
Channingss 已提交
72

73

S
SunAhong1993 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def _is_static_shape(shape):
    negtive_dims = 0
    error_dims = 0
    for dim in shape:
        if dim < 0:
            negtive_dims += 1
        if dim < -1:
            error_dims += 1
    if negtive_dims > 1:
        return False
    if error_dims > 0:
        return False
    return True


def _get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
103
            raise Exception("convert failed node:{}, op_type is {}".format(
S
SunAhong1993 已提交
104
                node.name[9:], node.layer_type))
S
SunAhong1993 已提交
105 106 107 108 109 110 111 112 113 114
        else:
            return res

    return run_mapping


class OpSet9():
    elementwise_ops = {
        'Add': 'paddle.add',
        'Div': 'paddle.divide',
S
SunAhong1993 已提交
115
        'Sub': 'paddle.subtract',
S
SunAhong1993 已提交
116 117
        'Mul': 'paddle.multiply',
        'Pow': 'paddle.pow',
118
        'Less': 'paddle.less_than',
S
SunAhong1993 已提交
119 120
    }

S
SunAhong1993 已提交
121 122 123
    directly_map_ops = {
        'Ceil': ['paddle.ceil'],
        # reduce function
124 125 126
        'ReduceMean': [
            'paddle.mean', dict(
                axes='axis', keepdims='keepdim'), dict(
127
                    axes=None, keepdims=True)
128 129 130 131
        ],
        'ReduceMin': [
            'paddle.min', dict(
                axes='axis', keepdims='keepdim'), dict(
132
                    axes=None, keepdim=True)
133 134 135 136
        ],
        'ReduceMax': [
            'paddle.max', dict(
                axes='axis', keepdims='keepdim'), dict(
137
                    axes=None, keepdim=True)
138 139 140 141
        ],
        'ReduceProd': [
            'paddle.prod', dict(
                axes='axis', keepdims='keepdim'), dict(
142
                    axes=None, keepdim=True)
143
        ],
S
SunAhong1993 已提交
144 145
        # active function
        'Relu': ['paddle.nn.ReLU'],
146 147 148 149 150 151 152 153 154 155
        'LeakyRelu': [
            'paddle.nn.LeakyReLU', dict(alpha='negative_slope'),
            dict(negative_slope=.01)
        ],
        'Elu':
        ['paddle.nn.functional.elu', dict(alpha='alpha'), dict(alpha=1.)],
        'ThresholdedRelu': [
            'paddle.nn.functional.thresholded_relu', dict(alpha='threshold'),
            dict(alpha=1.)
        ],
S
SunAhong1993 已提交
156 157 158
        'Tanh': ['paddle.nn.Tanh'],
        'Sigmoid': ['paddle.nn.Sigmoid'],
        'Softsign': ['paddle.nn.Softsign'],
159 160 161 162
        'Softplus': [
            'paddle.nn.Softplus', dict(threshold='threshold'),
            dict(threshold=float(sys.maxsize))
        ],
S
SunAhong1993 已提交
163
        'Exp': ['paddle.exp'],
S
SunAhong1993 已提交
164
        'Log': ['paddle.log'],
165 166 167
        'LogSoftmax':
        ['paddle.nn.functional.log_softmax', dict(axis='axis'), dict(axis=1)],
        'Softmax': ['paddle.nn.Softmax', dict(axis='axis'), dict(axis=1)],
S
SunAhong1993 已提交
168 169 170 171
        'Sqrt': ['paddle.sqrt'],
        'Floor': ['paddle.floor'],
        'Abs': ['paddle.abs'],
        'Erf': ['paddle.erf'],
S
SunAhong1993 已提交
172 173 174 175 176 177 178 179 180
    }

    def __init__(self, decoder, paddle_graph):
        super(OpSet9, self).__init__()
        self.graph = decoder.graph
        self.paddle_graph = paddle_graph
        self.inputs_info = dict()
        self.weights = dict()
        self.nn_name2id = dict()
S
fix  
SunAhong1993 已提交
181
        self.done_weight_list = list()
S
SunAhong1993 已提交
182 183 184 185 186 187

    @print_mapping_info
    def directly_map(self, node, *args, **kwargs):
        inputs = node.layer.input
        assert len(inputs) == 1, 'directly_map error with multi inputs'
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        onnx_attrs = node.attr_map
        if '' in onnx_attrs:
            onnx_attrs.pop('')
        if '_' in onnx_attrs:
            onnx_attrs.pop('_')
        op_info = self.directly_map_ops[node.layer_type]
        paddle_op = op_info[0]
        layer_attrs = dict()
        if len(op_info) > 1:
            attrs_name_map_dict = op_info[1]
            for onnx_attr_name, pd_attr_name in attrs_name_map_dict.items():
                if onnx_attr_name in onnx_attrs:
                    layer_attrs[pd_attr_name] = onnx_attrs[onnx_attr_name]
                else:
                    layer_attrs[pd_attr_name] = op_info[2][onnx_attr_name]
203
        if paddle_op.startswith("paddle.nn") and 'functional' not in paddle_op:
S
SunAhong1993 已提交
204 205
            op_name = paddle_op[10:].lower()
            op_name = name_generator(op_name, self.nn_name2id)
S
SunAhong1993 已提交
206
            output_name = node.name
S
SunAhong1993 已提交
207
            layer_outputs = [op_name, output_name]
208

S
SunAhong1993 已提交
209 210
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
211
                inputs={"x": input.name},
S
SunAhong1993 已提交
212 213 214 215 216
                outputs=layer_outputs,
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
                kernel=paddle_op,
S
SunAhong1993 已提交
217 218
                inputs={"x": input.name},
                outputs=[node.name],
219 220
                **layer_attrs)

S
SunAhong1993 已提交
221 222 223 224 225
    @print_mapping_info
    def elementwise_map(self, node):
        op_type = self.elementwise_ops[node.layer_type]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
226
        inputs_dict = {'x': val_x.name, 'y': val_y.name}
S
SunAhong1993 已提交
227
        self.paddle_graph.add_layer(
228
            op_type, inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
229 230 231 232 233 234 235 236 237 238 239 240

    @print_mapping_info
    def place_holder(self, node):
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
                assert 'shape of input is not assigned'
        self.paddle_graph.add_layer(
            kernel="paddle.to_tensor",
            inputs={},
S
SunAhong1993 已提交
241
            outputs=[node.name],
S
SunAhong1993 已提交
242 243
            data=node.name)
        self.inputs_info[node.name] = [shape, node.dtype]
S
SunAhong1993 已提交
244 245 246 247 248 249 250

    @print_mapping_info
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
        shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
251
        if hasattr(node.weight, "shape") and len(node.weight.shape) == 0:
S
SunAhong1993 已提交
252
            self.paddle_graph.add_layer(
253 254
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
255
                outputs=[node.name],
S
SunAhong1993 已提交
256 257 258 259
                dtype=string(dtype),
                shape=[1],
                fill_value=node.weight)
        else:
S
SunAhong1993 已提交
260
            self.weights[node.name] = node.weight
S
SunAhong1993 已提交
261 262 263
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
264
                outputs=[node.name],
S
SunAhong1993 已提交
265
                shape=shape,
S
SunAhong1993 已提交
266
                attr=string(node.name),
S
SunAhong1993 已提交
267
                dtype=string(dtype),
268
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")
S
SunAhong1993 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

    def _interpolate(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
285
        inputs = {'x': val_x.name}
S
fix  
SunAhong1993 已提交
286
        attrs = dict()
S
SunAhong1993 已提交
287 288 289 290
        if node.layer_type == 'Resize':
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
291
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
292
                # which is the same as the rank of input.
293 294
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
295 296 297
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
298
                # TODO(syf): paddle.nn.functional.interpolate will support the length
S
fix  
SunAhong1993 已提交
299
                # which is the same as the rank of input.
300 301
                attrs['scale_factor'] = self.weights[val_scales.name].tolist()[
                    2:]
S
SunAhong1993 已提交
302 303 304
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
                val_x_shape = val_x.out_shapes[0]
                if len(val_x_shape) == 3:
                    var_n, var_hw = val_sizes.name + '_n', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_n, var_hw],
                        num_or_sections=[1, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        'paddle.unsqueeze',
                        inputs={"x": val_x.name},
                        outputs=[val_x.name],
                        axis=0)
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={"x": node.name},
                        outputs=[node.name],
                        axis=0)
                else:
                    var_nc, var_hw = val_sizes.name + '_nc', val_sizes.name + '_hw'
                    self.paddle_graph.add_layer(
                        'paddle.split',
                        inputs={"x": val_sizes.name},
                        outputs=[var_nc, var_hw],
                        num_or_sections=[2, 2],
                        axis=0)
                    self.paddle_graph.add_layer(
                        "paddle.cast",
                        inputs={"x": var_hw},
                        outputs=[var_hw],
                        dtype=string('int32'))
                    inputs['size'] = var_hw
                    attrs = {
                        "align_corners": False,
                        "mode": string(node.get_attr('mode', 'nearest'))
                    }
                    mode = node.get_attr('mode', 'nearest')
                    if mode == "linear":
                        attrs["mode"] = string("bilinear")
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'pytorch_half_pixel':
                        attrs["align_corners"] = False
                        attrs["align_mode"] = 0
                    if node.get_attr('coordinate_transformation_mode',
                                     'half_pixel') == 'align_corners':
                        attrs["align_corners"] = True
                    self.paddle_graph.add_layer(
                        kernel="paddle.nn.functional.interpolate",
                        inputs=inputs,
                        outputs=[node.name],
                        **attrs)
S
SunAhong1993 已提交
382
                return
S
SunAhong1993 已提交
383 384
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
385 386 387 388 389 390 391 392
            self.paddle_graph.add_layer(
                "paddle.slice",
                inputs={"input": val_scales.name},
                outputs=[val_scales.name],
                axes=[0],
                starts=[2],
                ends=[4])
            inputs['scale_factor'] = val_scales.name
393

S
SunAhong1993 已提交
394
        mode = node.get_attr('mode', 'nearest')
395 396 397 398 399
        attrs.update({
            "align_corners": False,
            "mode": string(mode),
            "align_mode": 1
        })
S
SunAhong1993 已提交
400 401 402
        val_x_shape = val_x.out_shapes[0]
        if mode == "linear" and len(val_x_shape) == 4:
            attrs["mode"] = string("bilinear")
403 404 405 406 407 408
            if node.get_attr('coordinate_transformation_mode',
                             'half_pixel') == 'pytorch_half_pixel':
                attrs["align_corners"] = False
                attrs["align_mode"] = 0
            else:
                attrs["align_corners"] = True
S
SunAhong1993 已提交
409 410 411
        self.paddle_graph.add_layer(
            kernel="paddle.nn.functional.interpolate",
            inputs=inputs,
S
SunAhong1993 已提交
412
            outputs=[node.name],
S
SunAhong1993 已提交
413
            **attrs)
414

S
SunAhong1993 已提交
415 416 417 418 419 420 421
    @print_mapping_info
    def HardSigmoid(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.2)
        beta = node.get_attr('beta', 0.5)
        self.paddle_graph.add_layer(
            kernel="paddle.scale",
S
SunAhong1993 已提交
422 423
            inputs={"x": val_x.name},
            outputs=[node.name + "_val"],
S
SunAhong1993 已提交
424 425 426 427
            scale=alpha,
            bias=beta)
        self.paddle_graph.add_layer(
            kernel="paddle.clip",
S
SunAhong1993 已提交
428 429
            inputs={"x": node.name + "_val"},
            outputs=[node.name],
S
SunAhong1993 已提交
430
            min=0.0,
431 432
            max=1.0)

S
SunAhong1993 已提交
433 434 435 436 437 438 439 440
    @print_mapping_info
    def Shape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_x.name},
            outputs=[node.name])
        self.paddle_graph.add_layer(
441 442 443 444
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
            dtype=string('int64'))
S
SunAhong1993 已提交
445 446 447 448 449 450 451 452 453 454

    @print_mapping_info
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
455 456 457 458 459 460
        val_rois_shape = val_rois.name + '_shape'
        self.paddle_graph.add_layer(
            kernel="paddle.shape",
            inputs={"input": val_rois.name},
            outputs=[val_rois_shape])
        val_rois_num = val_rois.name + '_num'
461 462 463 464 465 466 467 468 469 470 471 472 473 474
        if len(val_rois.out_shapes[0]) == 4:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _', ' _', ' _'],
                num_or_sections=[1, 1, 1, 1],
                axis=0)
        elif len(val_rois.out_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_rois_shape},
                outputs=[val_rois_num, ' _'],
                num_or_sections=[1, 1],
                axis=0)
S
SunAhong1993 已提交
475 476 477 478 479
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
480
            'rois_num': val_rois_num,
S
SunAhong1993 已提交
481 482
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
483
            'paddle.fluid.layers.roi_align',
S
SunAhong1993 已提交
484 485 486
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
            **layer_attrs)

    @print_mapping_info
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)

        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        layer_attrs = {
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
502
            'paddle.fluid.layers.roi_pool',
S
SunAhong1993 已提交
503 504 505
            inputs={'input': val_x.name,
                    'rois': val_rois.name},
            outputs=[node.name],
S
SunAhong1993 已提交
506 507 508 509 510 511
            **layer_attrs)

    @print_mapping_info
    def Pad(self, node, op_independent=True):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        pads = node.get_attr('pads')
S
SunAhong1993 已提交
512 513 514 515 516 517 518 519
        is_pads_attr = True
        if pads is None:
            val_pad = self.graph.get_input_node(node, idx=1, copy=True)
            pad_shape = val_pad.out_shapes[0]
            is_pads_attr = False
            pads = _const_weight_or_none(val_pad)
            if pads is not None:
                is_pads_attr = True
S
SunAhong1993 已提交
520
        mode = node.get_attr('mode', 'constant')
521 522
        if mode in ["edge"]:
            mode = "replicate"
S
SunAhong1993 已提交
523 524 525
        value = node.get_attr('value', 0.)
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
S
fix  
SunAhong1993 已提交
526
        assume_pad = False
S
SunAhong1993 已提交
527 528
        layer_attrs = {}
        layer_attrs['mode'] = string(mode)
S
fix  
SunAhong1993 已提交
529 530 531
        layer_attrs['value'] = value
        if not op_independent:
            output_name = node.name + '_paded'
S
SunAhong1993 已提交
532
        else:
S
fix  
SunAhong1993 已提交
533 534 535
            output_name = node.name
        nn_op_name = name_generator("pad", self.nn_name2id)
        layer_outputs = [nn_op_name, output_name]
S
SunAhong1993 已提交
536 537
        if is_pads_attr:
            paddings = []
S
SunAhong1993 已提交
538
            if len(pads) == 10 and sum(pads) == 0:
539
                pads = pads[0:6]
S
fix  
SunAhong1993 已提交
540
            if len(pads) in [2, 4, 6]:
S
SunAhong1993 已提交
541
                if data_shape:
542 543
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == len(pads)  # NCHW
S
SunAhong1993 已提交
544
                if output_shape:
545 546
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
547 548 549 550
                if assume_pad:
                    paddle_op = 'paddle.nn.Pad{}D'.format(len(output_shape) - 2)
                    paddings = np.array(pads).reshape(
                        (2, -1)).transpose().astype("int32")
S
for pad  
SunAhong1993 已提交
551
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
S
fix  
SunAhong1993 已提交
552 553 554
                    layer_attrs['padding'] = paddings
                else:
                    if data_shape:
555 556
                        assume_pad |= data_shape and 2 * len(data_shape) == len(
                            pads)  # NCHW
S
fix  
SunAhong1993 已提交
557
                    if output_shape:
558 559
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == len(pads)  # NCHW
S
fix  
SunAhong1993 已提交
560 561 562
                    if assume_pad:
                        paddle_op = 'paddle.nn.functional.pad'
                        paddings = np.array(pads).reshape(
563 564
                            (2,
                             -1)).transpose().astype("int32").flatten().tolist()
S
fix  
SunAhong1993 已提交
565 566
                        layer_attrs['pad'] = paddings
                    else:
567 568
                        raise Exception("The padding value {} is wrong!".format(
                            pads))
S
SunAhong1993 已提交
569
            elif len(pads) == 8:
S
fix  
SunAhong1993 已提交
570
                if data_shape:
571 572
                    assume_pad |= data_shape and 2 * len(data_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
573
                if output_shape:
574 575
                    assume_pad |= output_shape and 2 * len(output_shape) == len(
                        pads)  # NCHW
S
fix  
SunAhong1993 已提交
576
                if assume_pad:
S
for pad  
SunAhong1993 已提交
577
                    paddle_op = 'paddle.nn.Pad2D'
S
fix  
SunAhong1993 已提交
578
                    paddings = np.array(pads).reshape(
S
for pad  
SunAhong1993 已提交
579 580 581 582 583 584 585 586
                        (2, -1)).transpose().astype("int32")
                    paddings = np.flip(paddings, axis=0).flatten().tolist()
                    if sum(paddings[:4]) == 0:
                        paddings = paddings[4:]
                        layer_attrs['padding'] = paddings
                    else:
                        layer_attrs["pad"] = paddings
                        paddle_op = "custom_layer:PadAllDim4WithOneInput"
S
SunAhong1993 已提交
587
            else:
588
                raise Exception("The padding value {} is wrong!".format(pads))
S
SunAhong1993 已提交
589
            self.paddle_graph.add_layer(
590 591 592 593
                paddle_op,
                inputs={'x': val_x.name},
                outputs=layer_outputs[1:]
                if paddle_op == 'paddle.nn.functional.pad' else layer_outputs,
S
SunAhong1993 已提交
594
                **layer_attrs)
S
fix  
SunAhong1993 已提交
595
            if not op_independent:
S
SunAhong1993 已提交
596
                return node.name + '_paded'
S
SunAhong1993 已提交
597
        else:
S
fix  
SunAhong1993 已提交
598 599
            pads_len = val_pad.out_shapes[0][0]
            if pads_len in [2, 4, 6]:
S
SunAhong1993 已提交
600
                if data_shape:
601 602
                    assume_pad |= data_shape and 2 * (len(data_shape) - 2
                                                      ) == pads_len  # NCHW
S
SunAhong1993 已提交
603
                if output_shape:
604 605
                    assume_pad |= output_shape and 2 * (len(output_shape) - 2
                                                        ) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
606 607 608 609 610 611 612 613
                if assume_pad:
                    if pads_len == 2:
                        data_format = "NCL"
                    elif pads_len == 4:
                        data_format = "NCHW"
                    else:
                        data_format = "NCDHW"
                    self.paddle_graph.add_layer(
614 615 616
                        "custom_layer:PadWithTwoInput",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
S
fix  
SunAhong1993 已提交
617 618 619 620 621 622
                        outputs=layer_outputs,
                        value=value,
                        mode=string(mode),
                        data_format=string(data_format))
                else:
                    if data_shape:
623 624
                        assume_pad |= data_shape and 2 * len(
                            data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
625
                    if output_shape:
626 627
                        assume_pad |= output_shape and 2 * len(
                            output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
628 629 630
                    if assume_pad:
                        if pads_len == 4:
                            self.paddle_graph.add_layer(
631 632 633 634
                                "custom_layer:PadAllDim2",
                                inputs={'x': val_x.name,
                                        'pad': val_pad.name},
                                outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
635 636 637 638 639 640
                                value=value,
                                mode=string(mode))
                        else:
                            raise Exception("The padding value is wrong!")
            elif pads_len == 8:
                if data_shape:
641 642
                    assume_pad |= data_shape and 2 * len(
                        data_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
643
                if output_shape:
644 645
                    assume_pad |= output_shape and 2 * len(
                        output_shape) == pads_len  # NCHW
S
fix  
SunAhong1993 已提交
646 647
                if assume_pad:
                    self.paddle_graph.add_layer(
648 649 650 651
                        "custom_layer:PadAllDim4",
                        inputs={'x': val_x.name,
                                'pad': val_pad.name},
                        outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
652 653 654
                        value=value,
                        mode=string(mode))
            else:
655
                raise Exception("The padding value is wrong!")
S
SunAhong1993 已提交
656 657
            if not op_independent:
                return node.name + '_paded'
S
SunAhong1993 已提交
658 659 660 661 662

    @print_mapping_info
    def Unsqueeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
663 664 665
        if axes is None:
            axes = self.graph.get_input_node(node, idx=1, copy=True)

S
SunAhong1993 已提交
666
        if len(val_x.out_shapes[0]) == 0:
S
SunAhong1993 已提交
667
            if node.name:
S
SunAhong1993 已提交
668 669
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
670 671
                    inputs={"x": val_x.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
672 673
                    shape=[1])
        else:
674 675 676 677 678 679 680 681 682 683 684 685
            if isinstance(axes, list) or isinstance(axes, tuple):
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name},
                    axis=axes,
                    outputs=[node.name])
            else:
                self.paddle_graph.add_layer(
                    'paddle.unsqueeze',
                    inputs={"x": val_x.name,
                            "axis": axes.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
686 687 688 689 690 691 692 693

    @print_mapping_info
    def Shrink(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        self.paddle_graph.add_layer(
694 695 696
            'paddle.nn.functional.hardshrink',
            inputs={"x": val_x.name},
            outputs=[node.name],
S
SunAhong1993 已提交
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
            threshold=lambd)

    @print_mapping_info
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'

        shape = node.get_attr('shape', None)

        if shape is None:
            shape = val_output.out_shapes[0]
        if shape is None:
            shape = list(value.shape)
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
S
SunAhong1993 已提交
718
                            val_output.name, val_output.name)
S
SunAhong1993 已提交
719 720 721 722
        if len(value) == 1:
            value = value.tolist()
            value = value[0]
            self.paddle_graph.add_layer(
723 724
                "paddle.full",
                inputs={},
S
SunAhong1993 已提交
725
                outputs=[node.name],
S
SunAhong1993 已提交
726 727 728 729 730
                dtype=string(dtype),
                shape=[1],
                fill_value=value)
        else:
            value = np.reshape(value, shape)
S
SunAhong1993 已提交
731
            self.weights[node.name] = value
S
SunAhong1993 已提交
732 733 734
            self.paddle_graph.add_layer(
                "self.create_parameter",
                inputs={},
S
SunAhong1993 已提交
735
                outputs=[node.name],
S
SunAhong1993 已提交
736
                shape=shape,
S
SunAhong1993 已提交
737
                attr=string(node.name),
S
SunAhong1993 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751
                dtype=string(dtype),
                default_initializer="paddle.nn.initializer.Constant(value=0.0)")

    @print_mapping_info
    def Resize(self, node):
        self._interpolate(node)

    @print_mapping_info
    def Upsample(self, node):
        self._interpolate(node)

    @print_mapping_info
    def InstanceNormalization(self, node):
        op_name = name_generator("instanse_norm", self.nn_name2id)
S
SunAhong1993 已提交
752
        output_name = node.name
S
SunAhong1993 已提交
753 754 755 756 757
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
758 759
        self.weights[op_name + '.scale'] = self.weights[val_scale.name]
        self.weights[op_name + '.bias'] = self.weights[val_b.name]
S
SunAhong1993 已提交
760 761 762 763 764
        layer_attrs = {
            'num_features': node.out_shapes[0][1],
            'epsilon': epsilon,
        }
        dim = len(val_x.out_shapes[0])
S
SunAhong1993 已提交
765
        if dim == 3:
S
SunAhong1993 已提交
766 767 768 769 770 771
            paddle_op = "paddle.nn.InstanceNorm1D"
        elif dim == 4:
            paddle_op = "paddle.nn.InstanceNorm2D"
        elif dim == 5:
            paddle_op = "paddle.nn.InstanceNorm3D"
        else:
772 773 774
            raise Exception(
                "The paddle only support 2D, 3D, 4D or 5D input in InstanceNormalization."
            )
S
SunAhong1993 已提交
775
        self.paddle_graph.add_layer(
776 777 778
            paddle_op,
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
779 780 781 782 783 784 785
            **layer_attrs)

    @print_mapping_info
    def Expand(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_x_dtype = val_x.dtype
S
SunAhong1993 已提交
786
        name_ones = node.name + '_ones'
S
SunAhong1993 已提交
787
        attr_ones = {
S
SunAhong1993 已提交
788
            'shape': val_shape.name,
S
SunAhong1993 已提交
789 790 791 792
            'dtype': string(val_x_dtype),
            'fill_value': 1
        }
        self.paddle_graph.add_layer(
793 794
            'paddle.full', inputs={}, outputs=[name_ones], **attr_ones)
        inputs_dict = {'x': name_ones, 'y': val_x.name}
S
SunAhong1993 已提交
795
        self.paddle_graph.add_layer(
796
            'paddle.multiply', inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
797

Y
yeliang2258 已提交
798 799 800 801 802 803 804 805
    @print_mapping_info
    def GatherND(self, node):
        x = self.graph.get_input_node(node, idx=0, copy=True)
        index = self.graph.get_input_node(node, idx=1, copy=True)
        inputs = {'x': x.name, 'index': index.name}
        self.paddle_graph.add_layer(
            "paddle.gather_nd", inputs=inputs, outputs=[node.name])

S
SunAhong1993 已提交
806 807 808 809 810 811 812 813 814 815 816 817
    @print_mapping_info
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
        axis = node.get_attr('axis', 0)
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
        if axis == 0 and len(indices_shape) <= 1:
            if len(val_x.out_shapes[0]) <= 1:
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
818 819 820
                    inputs={'x': val_x.name,
                            'index': indices.name},
                    outputs=[node.name])
S
SunAhong1993 已提交
821 822
            elif len(val_x.out_shapes[0]) > 1:
                if len(indices_shape) == 0:
S
SunAhong1993 已提交
823
                    gather_ = node.name + '_1'
S
SunAhong1993 已提交
824 825
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
826 827
                        inputs={'x': val_x.name,
                                'index': indices.name},
S
SunAhong1993 已提交
828 829 830 831
                        outputs=[gather_])
                    self.paddle_graph.add_layer(
                        'paddle.squeeze',
                        inputs={'x': gather_},
S
SunAhong1993 已提交
832
                        outputs=[node.name],
S
SunAhong1993 已提交
833 834 835 836
                        axis=[0])
                else:
                    self.paddle_graph.add_layer(
                        'paddle.gather',
S
SunAhong1993 已提交
837 838 839
                        inputs={'x': val_x.name,
                                'index': indices.name},
                        outputs=[node.name])
S
SunAhong1993 已提交
840 841 842
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
843
            name_trans = val_x.name + '_trans'
S
SunAhong1993 已提交
844 845
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
846
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
847 848 849 850 851
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
S
SunAhong1993 已提交
852 853
                        'index': indices.name},
                outputs=[node.name])
S
SunAhong1993 已提交
854 855 856
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
857
            self.paddle_graph.add_layer(
858 859 860
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
S
SunAhong1993 已提交
861
                perm=new_perm)
S
SunAhong1993 已提交
862 863 864
            if len(indices_shape) < 1:
                self.paddle_graph.add_layer(
                    'paddle.squeeze',
S
SunAhong1993 已提交
865 866
                    inputs={'x': node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
867 868 869 870
                    axis=[axis])
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
S
SunAhong1993 已提交
871
                indices_cast = indices.name + '_cast'
S
SunAhong1993 已提交
872 873
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
874
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
875
                    outputs=[indices_cast],
S
SunAhong1993 已提交
876 877
                    dtype=string('int64'))
                op_name = name_generator("embedding", self.nn_name2id)
S
SunAhong1993 已提交
878
                output_name = node.name
S
SunAhong1993 已提交
879
                layer_outputs = [op_name, output_name]
C
Channingss 已提交
880
                self.weights[op_name + '.weight'] = _const_weight_or_none(val_x)
S
SunAhong1993 已提交
881 882 883 884
                self.paddle_graph.add_layer(
                    'paddle.nn.Embedding',
                    inputs={"x": indices_cast},
                    outputs=layer_outputs,
S
fix  
SunAhong1993 已提交
885 886
                    num_embeddings=val_x.out_shapes[0][0],
                    embedding_dim=val_x.out_shapes[0][1])
S
SunAhong1993 已提交
887 888 889
            else:
                from functools import reduce
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
890
                indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
891 892
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
893
                    inputs={"x": indices.name},
S
SunAhong1993 已提交
894 895 896 897 898 899
                    outputs=[indices_reshape],
                    shape=[reshape_shape, ])

                perm = list(range(len(val_x.out_shapes[0])))
                self.paddle_graph.add_layer(
                    'paddle.gather',
S
SunAhong1993 已提交
900
                    inputs={'x': val_x.name,
S
SunAhong1993 已提交
901
                            'index': indices_reshape},
S
SunAhong1993 已提交
902
                    outputs=[node.name])
S
SunAhong1993 已提交
903 904 905 906 907 908 909 910
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
911 912
                    inputs={"x": node.name},
                    outputs=[node.name],
S
SunAhong1993 已提交
913 914 915 916
                    shape=reshaped_shape)
        elif axis > 0 and len(indices_shape) > 1:
            from functools import reduce
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
S
SunAhong1993 已提交
917
            indices_reshape = indices.name + '_shape'
S
SunAhong1993 已提交
918 919
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
920
                inputs={"x": indices.name},
S
SunAhong1993 已提交
921 922 923 924 925
                outputs=[indices_reshape],
                shape=[reshape_shape, ])

            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
S
SunAhong1993 已提交
926
            name_trans = val_x.name + '_transpose'
S
SunAhong1993 已提交
927 928
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
929
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
930 931 932 933 934 935
                outputs=[name_trans],
                perm=perm)
            self.paddle_graph.add_layer(
                'paddle.gather',
                inputs={'x': name_trans,
                        'index': indices_reshape},
S
SunAhong1993 已提交
936 937
                outputs=[node.name])
            input_transpose = node.name + '_transpose'
S
SunAhong1993 已提交
938 939 940
            new_perm = [0] * len(perm)
            for i in range(len(perm)):
                new_perm[perm[i]] = i
S
SunAhong1993 已提交
941 942
            self.paddle_graph.add_layer(
                'paddle.transpose',
S
SunAhong1993 已提交
943
                inputs={"x": node.name},
S
SunAhong1993 已提交
944
                outputs=[input_transpose],
S
SunAhong1993 已提交
945 946
                perm=new_perm)
            perm = new_perm
S
SunAhong1993 已提交
947 948 949 950 951 952 953 954 955
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": input_transpose},
S
SunAhong1993 已提交
956
                outputs=[node.name],
S
SunAhong1993 已提交
957 958 959 960 961 962 963 964 965 966
                shape=reshaped_shape)

    @print_mapping_info
    def ScatterND(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        updates = self.graph.get_input_node(node, idx=2, copy=True)
        if len(indices.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                'paddle.scatter',
967 968 969 970 971
                inputs={
                    'x': val_x.name,
                    'index': indices.name,
                    'updates': updates.name
                },
S
SunAhong1993 已提交
972
                outputs=[node.name])
S
SunAhong1993 已提交
973
        else:
S
SunAhong1993 已提交
974
            input_inner_indices = node.name + '_input_inner_indices'
S
SunAhong1993 已提交
975 976 977
            shape = val_x.out_shapes[0]
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
978 979
                inputs={"x": indices.name},
                outputs=[indices.name],
S
SunAhong1993 已提交
980 981
                shape=indices.out_shapes[0])

S
SunAhong1993 已提交
982
            zeros_like_val_x = val_x.name + '_zeros'
S
SunAhong1993 已提交
983 984
            self.paddle_graph.add_layer(
                'paddle.zeros_like',
S
SunAhong1993 已提交
985
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
986 987 988 989 990
                outputs=[zeros_like_val_x])
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
991 992
                    'index': indices.name,
                    'updates': updates.name
S
SunAhong1993 已提交
993 994
                },
                outputs=[input_inner_indices])
S
SunAhong1993 已提交
995 996
            indices_mask = node.name + '_indices_mask'
            constant_minus_one = node.name + '_constant_minus_one'
S
SunAhong1993 已提交
997 998 999
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1000
                inputs={"x": updates.name},
S
SunAhong1993 已提交
1001 1002 1003 1004 1005 1006 1007
                outputs=[constant_minus_one],
                dtype=string(updates.dtype),
                fill_value=-1)
            self.paddle_graph.add_layer(
                'paddle.scatter_nd_add',
                inputs={
                    'x': zeros_like_val_x,
S
SunAhong1993 已提交
1008
                    'index': indices.name,
S
SunAhong1993 已提交
1009 1010 1011
                    'updates': constant_minus_one
                },
                outputs=[indices_mask])
S
SunAhong1993 已提交
1012
            constant_one = node.name + '_constant_1'
S
SunAhong1993 已提交
1013 1014 1015
            # full_like support create tensor shape like input tensor
            self.paddle_graph.add_layer(
                'paddle.full_like',
S
SunAhong1993 已提交
1016
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1017 1018 1019
                outputs=[constant_one],
                dtype=string(val_x.dtype),
                fill_value=1)
S
SunAhong1993 已提交
1020
            input_out_indices_mask = node.name + '_input_out_indices_mask'
S
SunAhong1993 已提交
1021 1022 1023 1024 1025 1026
            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": indices_mask,
                        "y": constant_one},
                outputs=[input_out_indices_mask])

S
SunAhong1993 已提交
1027
            input_out_indices = node.name + '_input_out_indices'
S
SunAhong1993 已提交
1028 1029
            self.paddle_graph.add_layer(
                "paddle.multiply",
S
SunAhong1993 已提交
1030
                inputs={"x": val_x.name,
S
SunAhong1993 已提交
1031 1032 1033 1034 1035 1036 1037
                        "y": input_out_indices_mask},
                outputs=[input_out_indices])

            self.paddle_graph.add_layer(
                "paddle.add",
                inputs={"x": input_inner_indices,
                        "y": input_out_indices},
S
SunAhong1993 已提交
1038
                outputs=[node.name])
S
SunAhong1993 已提交
1039 1040 1041 1042 1043 1044 1045

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
1046 1047 1048 1049 1050
        inputs = {
            'start': val_start.name,
            'end': val_limit.name,
            'step': val_delta.name
        }
S
SunAhong1993 已提交
1051 1052 1053
        self.paddle_graph.add_layer(
            'paddle.arange',
            inputs=inputs,
S
SunAhong1993 已提交
1054
            outputs=[node.name],
S
SunAhong1993 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
            dtype=string(dtype))

    @print_mapping_info
    def Slice(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        starts, ends, axes, steps = None, None, None, None
        layer_attrs = {}
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
            starts_value = _const_weight_or_none(starts)
S
fix  
SunAhong1993 已提交
1066 1067
            if starts_value is not None:
                starts_value = starts_value.tolist()
S
SunAhong1993 已提交
1068
            ends_value = _const_weight_or_none(ends)
S
fix  
SunAhong1993 已提交
1069 1070 1071 1072 1073
            if ends_value is not None:
                ends_value = ends_value.tolist()
            if len(node.inputs) > 2:
                s_len = len(val_x.out_shapes[0])
                axes = list(range(s_len))
S
SunAhong1993 已提交
1074
            if len(node.inputs) > 3:
S
fix  
SunAhong1993 已提交
1075 1076
                axes_node = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes_node, necessary=True).tolist()
S
SunAhong1993 已提交
1077 1078
            if len(node.inputs) > 4:
                steps = self.graph.get_input_node(node, idx=4, copy=True)
S
fix  
SunAhong1993 已提交
1079
                steps = _const_weight_or_none(steps).tolist()
1080

S
SunAhong1993 已提交
1081 1082
            layer_attrs = {
                "axes": axes,
S
SunAhong1993 已提交
1083 1084
                "starts": starts.name,
                "ends": ends.name
S
SunAhong1993 已提交
1085
            }
S
SunAhong1993 已提交
1086
            if starts_value is not None and ends_value is not None and axes is not None:
S
SunAhong1993 已提交
1087 1088 1089
                starts_value = starts_value.copy()
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
1090 1091
                    if starts_value[idx] >= val_x.out_shapes[0][axes[
                            idx]] and val_x.out_shapes[0][axes[idx]] > 0:
S
SunAhong1993 已提交
1092 1093 1094 1095
                        starts_value[idx] = val_x.out_shapes[0][axes[idx]] - 1
                        ends_value[idx] = val_x.out_shapes[0][axes[idx]]
                    elif ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
1096

S
SunAhong1993 已提交
1097 1098 1099 1100 1101 1102 1103
                layer_attrs = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
S
SunAhong1993 已提交
1104
                    starts_cast = starts.name + '_cast'
S
SunAhong1993 已提交
1105 1106
                    self.paddle_graph.add_layer(
                        'paddle.cast',
S
SunAhong1993 已提交
1107
                        inputs={"x": starts.name},
S
SunAhong1993 已提交
1108 1109 1110 1111
                        outputs=[starts_cast],
                        dtype=string('int32'))
                    layer_attrs['starts'] = starts_cast
                if ends.dtype != 'int32':
S
SunAhong1993 已提交
1112
                    ends_cast = ends.name + '_cast'
S
SunAhong1993 已提交
1113 1114
                else:
                    ends_cast = ends.name
S
SunAhong1993 已提交
1115 1116
                self.paddle_graph.add_layer(
                    'paddle.cast',
S
SunAhong1993 已提交
1117
                    inputs={"x": ends.name},
S
SunAhong1993 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
                    outputs=[ends_cast],
                    dtype=string('int32'))
                layer_attrs['ends'] = ends_cast
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            layer_attrs = {"axes": axes, "starts": starts, "ends": ends}

        if steps is not None:
            layer_attrs['strides'] = steps
            self.paddle_graph.add_layer(
1133 1134 1135
                'paddle.strided_slice',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1136 1137 1138
                **layer_attrs)
        else:
            self.paddle_graph.add_layer(
1139 1140 1141
                'paddle.slice',
                inputs={"input": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
                **layer_attrs)

    @print_mapping_info
    def ConstantOfShape(self, node):
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
        if len(value) == 1:
            value = value[0]
1156
            layer_attrs = {'dtype': string(dtype), 'fill_value': value}
S
SunAhong1993 已提交
1157
            self.paddle_graph.add_layer(
1158 1159
                "paddle.full",
                inputs={'shape': val_shape.name},
S
SunAhong1993 已提交
1160
                outputs=[node.name],
S
SunAhong1993 已提交
1161 1162
                **layer_attrs)

Y
yeliang2258 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    @print_mapping_info
    def GatherND(self, node):
        print(len(node.inputs), node.inputs)
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
    @print_mapping_info
    def Clip(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
        max_value, min_value = None, None
        if len(node.inputs) == 1:
            max_value = node.get_attr('max')
            min_value = node.get_attr('min')
            layer_attrs = {
                'max': max_value,
                'min': min_value,
            }
1186

S
SunAhong1993 已提交
1187
            self.paddle_graph.add_layer(
1188 1189 1190
                'paddle.clip',
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1191 1192
                **layer_attrs)
        else:
Y
yeliang2258 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
            if len(node.inputs) == 2:
                val_ipt = self.graph.get_input_node(node, idx=1, copy=True)

                index = node.get_input_index(val_ipt.name)

                val_value = _const_weight_or_none(val_ipt)
                if val_value.shape == (1, ):
                    val_value = val_value[0]

                if index == 1:
                    layer_attrs = {'min': val_value}

                if index == 2:
                    layer_attrs = {'max': val_value}

1208 1209 1210 1211 1212 1213
                self.paddle_graph.add_layer(
                    'paddle.clip',
                    inputs={"x": val_x.name},
                    outputs=[node.name],
                    **layer_attrs)
            else:
Y
yeliang2258 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
                if len(node.inputs) == 3:
                    min_ipt = self.graph.get_input_node(node, idx=1, copy=True)
                    max_ipt = self.graph.get_input_node(node, idx=2, copy=True)
                    self.paddle_graph.add_layer(
                        'paddle.clip',
                        inputs={
                            "x": val_x.name,
                            "min": min_ipt.name,
                            "max": max_ipt.name
                        },
                        outputs=[node.name])
                else:
                    raise Exception("max_value or min_value can't be None")
S
SunAhong1993 已提交
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    @print_mapping_info
    def ReduceSum(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        if len(node.inputs) == 1:
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                keepdims = True
            axes_value = node.get_attr('axes')
            layer_attrs = {'axis': axes_value, 'keepdim': keepdims}
            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)
        else:
            axes = self.graph.get_input_node(node, idx=1, copy=True)
            axes_value = _const_weight_or_none(axes)
            if axes_value.shape == (1, ):
                axes_value = axes_value[0]
            keepdims = node.get_attr('keepdims')
            if keepdims is None:
                layer_attrs = {'axis': axes_value}
            else:
                layer_attrs = {'axis': axes_value, 'keepdim': keepdims}

            self.paddle_graph.add_layer(
                'paddle.sum',
                inputs={"x": val_x.name},
                outputs=[node.name],
                **layer_attrs)

    @print_mapping_info
    def Max(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.maximum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "max_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.maximum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def Min(self, node):
        if len(node.inputs) == 2:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            val_y = self.graph.get_input_node(node, idx=1, copy=True)
            self.paddle_graph.add_layer(
                "paddle.minimum",
                inputs={"x": val_x.name,
                        "y": val_y.name},
                outputs=[node.name])
        else:
            val_x = self.graph.get_input_node(node, idx=0, copy=True)
            temp_name = "min_"
            for i in range(1, len(node.inputs)):
                val_y = self.graph.get_input_node(node, idx=i, copy=True)
                temp_name = temp_name + str(i)
                if i == len(node.inputs) - 1:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[node.name])
                else:
                    self.paddle_graph.add_layer(
                        "paddle.minimum",
                        inputs={"x": val_x.name,
                                "y": val_y.name},
                        outputs=[temp_name])
                val_x.name = temp_name

    @print_mapping_info
    def GreaterOrEqual(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_equal",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def GatherND(self, node):
        print(len(node.inputs), node.inputs)
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.gather_nd",
            inputs={"x": val_x.name,
                    "index": val_y.name},
            outputs=[node.name])

    @print_mapping_info
    def And(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.logical_and",
            inputs={"x": val_x.name,
                    "y": val_y.name},
            outputs=[node.name])

S
SunAhong1993 已提交
1350 1351 1352 1353 1354
    @print_mapping_info
    def Split(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        paddle_op = 'split'
        split = node.get_attr('split')
1355 1356
        if split is None:
            split = len(node.outputs)
S
SunAhong1993 已提交
1357
        axis = node.get_attr('axis', 0)
Y
yeliang2258 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366
        if split is None:
            split_num = len(node.layer.output)
            layer_attrs = {
                'num_or_sections': split_num,
                'axis': axis,
            }
            outputs_list = list()
            for i in range(len(node.layer.output)):
                if hasattr(node, 'index'):
S
SunAhong1993 已提交
1367
                    outputs_list.append("{}_p{}".format(node.layer_name, i))
Y
yeliang2258 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
                else:
                    outputs_list.append("{}".format(node.layer_name))
            if split_num > 1:
                self.paddle_graph.add_layer(
                    'paddle.split',
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": val_x.name},
                    outputs=outputs_list,
                    dtype=string(val_x.dtype))

S
SunAhong1993 已提交
1383
        else:
Y
yeliang2258 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
            layer_attrs = {
                'num_or_sections': split,
                'axis': axis,
            }
            outputs_list = list()
            if isinstance(split, list) or isinstance(split, tuple):
                if len(split) == 1:
                    outputs_list.append(node.name)
                else:
                    for i in range(len(split)):
                        outputs_list.append("{}_p{}".format(node.layer_name, i))
1395
            else:
Y
yeliang2258 已提交
1396 1397 1398 1399 1400 1401
                outputs_list.append(node.name)
            self.paddle_graph.add_layer(
                'paddle.split',
                inputs={"x": val_x.name},
                outputs=outputs_list,
                **layer_attrs)
S
SunAhong1993 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

    @print_mapping_info
    def Reshape(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1414 1415
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1416 1417 1418 1419 1420
                shape=shape_value.tolist())
        elif len(node.out_shapes[0]) > 0 and _is_static_shape(node.out_shapes[
                0]):
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1421 1422
                inputs={'x': val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1423 1424 1425 1426 1427 1428
                shape=node.out_shapes[0])
        else:
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                self.paddle_graph.add_layer(
                    'paddle.reshape',
S
SunAhong1993 已提交
1429 1430
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
S
SunAhong1993 已提交
1431
                    shape=val_shape.out_shapes[0])
S
fix  
SunAhong1993 已提交
1432 1433 1434 1435 1436 1437
            if val_shape.dtype != "int32":
                self.paddle_graph.add_layer(
                    'paddle.cast',
                    inputs={'x': val_shape.name},
                    outputs=[val_shape.name],
                    dtype=string("int32"))
S
SunAhong1993 已提交
1438 1439
            self.paddle_graph.add_layer(
                'paddle.reshape',
S
SunAhong1993 已提交
1440 1441
                inputs={'x': val_x.name,
                        'shape': val_shape.name},
S
SunAhong1993 已提交
1442
                outputs=[node.name])
S
SunAhong1993 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

    @print_mapping_info
    def Cast(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        self.paddle_graph.add_layer(
1457 1458 1459
            'paddle.cast',
            inputs={'x': val_input.name},
            outputs=[node.name],
S
SunAhong1993 已提交
1460 1461 1462 1463 1464
            dtype=string(dtype))

    @print_mapping_info
    def Not(self, node):
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
1465 1466 1467 1468
        self.paddle_graph.add_layer(
            'paddle.logical_not',
            inputs={'x': val_input.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

    @print_mapping_info
    def AveragePool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
SunAhong1993 已提交
1492 1493 1494 1495 1496
        op_name = name_generator("pool", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        paddle_op = 'paddle.nn.AvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
S
SunAhong1993 已提交
1497
        layer_attrs = {
S
SunAhong1993 已提交
1498 1499 1500
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
S
SunAhong1993 已提交
1501 1502 1503 1504
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
        }
        self.paddle_graph.add_layer(
1505 1506 1507
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1508 1509 1510 1511 1512 1513 1514 1515
            **layer_attrs)

    @print_mapping_info
    def Concat(self, node):
        inputs_list = []
        dtypes = set()
        for i in range(len(node.layer.input)):
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1516
            inputs_list.append(ipt.name)
S
SunAhong1993 已提交
1517 1518 1519 1520 1521
            dtypes.add(ipt.dtype)
        if len(dtypes) > 1:
            assert 'Unspported situation happened, please create issue on https://github.com/PaddlePaddle/X2Paddle/issues.'
        axis = node.get_attr('axis')
        self.paddle_graph.add_layer(
1522 1523 1524
            'paddle.concat',
            inputs={"x": inputs_list},
            outputs=[node.name],
S
SunAhong1993 已提交
1525 1526 1527 1528 1529
            axis=axis)

    @print_mapping_info
    def Flatten(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1530
        output_shape = val_x.out_shapes[0]
S
SunAhong1993 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        axis = node.get_attr('axis', 1)
        shape_list = [1, 1]
        if axis == 0:
            for s in output_shape:
                shape_list[1] *= s
        else:
            for s in output_shape[:axis]:
                shape_list[0] *= s
            for s in output_shape[axis:]:
                shape_list[1] *= s
        self.paddle_graph.add_layer(
1542 1543
            'paddle.reshape',
            inputs={"x": val_x.name},
S
SunAhong1993 已提交
1544
            outputs=[node.name],
S
SunAhong1993 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
            shape=shape_list)

    @print_mapping_info
    def Gemm(self, node):
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
S
SunAhong1993 已提交
1557
        val_mm = node.name + '_mm'
1558
        matmul_inputs = {"x": val_a.name, "y": val_b.name}
S
SunAhong1993 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
        }
        self.paddle_graph.add_layer(
            'paddle.matmul',
            inputs=matmul_inputs,
            outputs=[val_mm],
            **attr_matmul)
        self.paddle_graph.add_layer(
1569
            "paddle.scale", inputs={"x": val_mm}, outputs=[val_mm], scale=alpha)
S
SunAhong1993 已提交
1570 1571 1572

        if beta != 0:
            if beta == 1.:
1573
                add_inputs = {"x": val_mm, "y": val_c.name}
S
SunAhong1993 已提交
1574
                self.paddle_graph.add_layer(
1575
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1576
            else:
S
SunAhong1993 已提交
1577
                var_beta = node.name + '_beta'
S
SunAhong1993 已提交
1578 1579
                self.paddle_graph.add_layer(
                    "paddle.scale",
S
SunAhong1993 已提交
1580
                    inputs={"x": val_c.name},
S
SunAhong1993 已提交
1581 1582 1583 1584
                    outputs=[var_beta],
                    scale=beta)
                add_inputs = {"x": val_mm, "y": var_beta}
                self.paddle_graph.add_layer(
1585
                    "paddle.add", inputs=add_inputs, outputs=[node.name])
S
SunAhong1993 已提交
1586 1587 1588 1589 1590

    @print_mapping_info
    def Sum(self, node):
        val_inps = node.layer.input
        inputs_dict = {
S
SunAhong1993 已提交
1591 1592 1593 1594
            "x": self.graph.get_input_node(
                node, idx=0, copy=True).name,
            "y": self.graph.get_input_node(
                node, idx=1, copy=True).name,
S
SunAhong1993 已提交
1595
        }
1596 1597
        self.paddle_graph.add_layer(
            "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1598 1599 1600 1601

        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
            inputs_dict = {
S
SunAhong1993 已提交
1602 1603
                "x": node.name,
                "y": y.name,
S
SunAhong1993 已提交
1604 1605
            }
            self.paddle_graph.add_layer(
1606
                "paddle.add", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1607 1608 1609 1610 1611 1612 1613

    @print_mapping_info
    def MatMul(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        x_shape = val_x.out_shapes[0]
        y_shape = val_y.out_shapes[0]
1614
        inputs_dict = {"x": val_x.name, "y": val_y.name}
S
SunAhong1993 已提交
1615
        if y_shape[0] == 1 and x_shape[-1] != 1 and x_shape[0] != 1:
S
SunAhong1993 已提交
1616
            y_squeeze = val_y.name + '_squeeze'
S
SunAhong1993 已提交
1617 1618
            self.paddle_graph.add_layer(
                "paddle.squeeze",
S
SunAhong1993 已提交
1619
                inputs={"x": val_y.name},
S
SunAhong1993 已提交
1620 1621 1622 1623
                outputs=[y_squeeze],
                axis=[0])
            inputs_dict['y'] = y_squeeze
            self.paddle_graph.add_layer(
1624
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1625 1626
        else:
            self.paddle_graph.add_layer(
1627
                "paddle.matmul", inputs=inputs_dict, outputs=[node.name])
S
SunAhong1993 已提交
1628 1629 1630 1631

    @print_mapping_info
    def BatchNormalization(self, node):
        op_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
1632
        output_name = node.name
S
SunAhong1993 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)
        c = val_x.out_shapes[0][1]

1644 1645 1646 1647 1648 1649 1650
        _rename_or_remove_weight(self.weights, val_scale.name,
                                 op_name + '.weight')
        _rename_or_remove_weight(self.weights, val_b.name, op_name + '.bias')
        _rename_or_remove_weight(self.weights, val_var.name,
                                 op_name + '._variance')
        _rename_or_remove_weight(self.weights, val_mean.name,
                                 op_name + '._mean')
C
Channingss 已提交
1651

S
SunAhong1993 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
        layer_attrs = {
            "num_channels": c,
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": True,
            "use_global_stats": False,
        }
        self.paddle_graph.add_layer(
1662 1663 1664
            "paddle.nn.BatchNorm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1665 1666 1667 1668 1669
            **layer_attrs)

    @print_mapping_info
    def Transpose(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
1670 1671 1672 1673
        s_len = len(val_x.out_shapes[0])
        perm_default = list(range(s_len))
        perm_default.reverse()
        perm = node.get_attr('perm', perm_default)
S
SunAhong1993 已提交
1674
        self.paddle_graph.add_layer(
1675
            "paddle.transpose",
S
SunAhong1993 已提交
1676
            inputs={"x": val_x.name},
1677
            outputs=[node.name],
S
SunAhong1993 已提交
1678 1679 1680 1681 1682
            perm=perm)

    @print_mapping_info
    def PRelu(self, node):
        op_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
1683
        output_name = node.name
S
SunAhong1993 已提交
1684 1685 1686 1687 1688 1689
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)

        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
1690
        if shape_slope == [1] * len(shape_slope):
S
SunAhong1993 已提交
1691 1692
            mode = 'all'

S
SunAhong1993 已提交
1693 1694 1695
        if mode == "element":
            self.paddle_graph.add_layer(
                "paddle.zeros",
1696 1697
                inputs={},
                outputs=[output_name + "__zeros"],
S
SunAhong1993 已提交
1698 1699 1700 1701
                shape=shape_slope,
                dtype=string(node.dtype))
            self.paddle_graph.add_layer(
                "paddle.maximum",
1702 1703
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
S
SunAhong1993 已提交
1704 1705 1706
                outputs=[output_name + "__max"])
            self.paddle_graph.add_layer(
                "paddle.minimum",
1707 1708
                inputs={"x": val_x.name,
                        "y": output_name + "__zeros"},
1709
                outputs=[output_name + "__min"])
S
SunAhong1993 已提交
1710 1711
            self.paddle_graph.add_layer(
                "paddle.multiply",
1712 1713
                inputs={"x": val_slope.name,
                        "y": output_name + "__min"},
S
SunAhong1993 已提交
1714 1715 1716
                outputs=[output_name + "__mul"])
            self.paddle_graph.add_layer(
                "paddle.add",
1717 1718 1719 1720
                inputs={
                    "x": output_name + "__max",
                    "y": output_name + "__mul"
                },
S
SunAhong1993 已提交
1721
                outputs=[output_name])
S
SunAhong1993 已提交
1722
        else:
S
fix  
SunAhong1993 已提交
1723
            if mode == 'channel':
S
SunAhong1993 已提交
1724
                slope_data = _const_weight_or_none(val_slope)
S
SunAhong1993 已提交
1725 1726
                if slope_data is None:
                    self.paddle_graph.add_layer(
1727 1728
                        "paddle.reshape",
                        inputs={"x": val_slope.name},
S
SunAhong1993 已提交
1729 1730 1731
                        outputs=[val_slope.name],
                        shape=[shape_slope[0]])
                    self.paddle_graph.add_layer(
1732
                        "paddle.nn.functional.prelu",
S
SunAhong1993 已提交
1733
                        inputs={"x": val_x.name,
1734
                                "weight": val_slope.name},
S
SunAhong1993 已提交
1735 1736
                        outputs=[node.name])
                    return
C
Channingss 已提交
1737
                _rename_or_remove_weight(self.weights, val_slope.name)
S
fix  
SunAhong1993 已提交
1738
                if len(shape_slope) > 1:
1739 1740
                    self.weights[op_name + '._weight'] = np.reshape(
                        slope_data, shape_slope[0])
S
SunAhong1993 已提交
1741 1742 1743
                num_parameters = val_x.out_shapes[0][1]
            else:
                num_parameters = 1
Y
yeliang2258 已提交
1744
                slope_data = self.weights[val_slope.name]
C
Channingss 已提交
1745
                _rename_or_remove_weight(self.weights, val_slope.name)
Y
yeliang2258 已提交
1746
                self.weights[op_name + '._weight'] = np.reshape(slope_data, [1])
S
SunAhong1993 已提交
1747
            self.paddle_graph.add_layer(
1748 1749 1750
                "paddle.nn.PReLU",
                inputs={"x": val_x.name},
                outputs=layer_outputs,
1751
                num_parameters=num_parameters)
S
SunAhong1993 已提交
1752 1753 1754 1755 1756 1757 1758 1759

    @print_mapping_info
    def Squeeze(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        if len(val_x.out_shapes[0]) == 1:
            self.paddle_graph.add_layer(
                "paddle.cast",
S
SunAhong1993 已提交
1760 1761
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1762 1763 1764
                dtype=string(val_x.dtype))
        else:
            self.paddle_graph.add_layer(
1765 1766 1767
                "paddle.squeeze",
                inputs={"x": val_x.name},
                outputs=[node.name],
S
SunAhong1993 已提交
1768 1769 1770 1771 1772 1773 1774 1775
                axis=axes)

    @print_mapping_info
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.equal",
S
SunAhong1993 已提交
1776 1777 1778
            inputs={'x': val_x.name,
                    'y': val_y.name},
            outputs=[node.name])
S
SunAhong1993 已提交
1779 1780 1781 1782 1783 1784 1785

    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        self.paddle_graph.add_layer(
            "paddle.greater_than",
S
SunAhong1993 已提交
1786 1787
            inputs={'x': val_x.name,
                    'y': val_y.name},
1788
            outputs=[node.name])
S
SunAhong1993 已提交
1789 1790 1791 1792 1793 1794 1795

    @print_mapping_info
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)

S
SunAhong1993 已提交
1796
        not_condition = condition.name + '_not'
S
SunAhong1993 已提交
1797 1798
        self.paddle_graph.add_layer(
            "paddle.logical_not",
S
SunAhong1993 已提交
1799
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1800 1801 1802 1803 1804 1805 1806
            outputs=[not_condition])
        cast_not_condition = not_condition + '_cast'
        self.paddle_graph.add_layer(
            "paddle.cast",
            inputs={"x": not_condition},
            outputs=[cast_not_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1807
        cast_condition = condition.name + '_cast'
S
SunAhong1993 已提交
1808 1809
        self.paddle_graph.add_layer(
            "paddle.cast",
S
SunAhong1993 已提交
1810
            inputs={"x": condition.name},
S
SunAhong1993 已提交
1811 1812
            outputs=[cast_condition],
            dtype=string(val_x.dtype))
S
SunAhong1993 已提交
1813
        mul_val_x = val_x.name + '_mul'
S
SunAhong1993 已提交
1814 1815
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1816
            inputs={'x': val_x.name,
S
SunAhong1993 已提交
1817 1818
                    'y': cast_condition},
            outputs=[mul_val_x])
S
SunAhong1993 已提交
1819
        mul_val_y = val_y.name + '_mul'
S
SunAhong1993 已提交
1820 1821
        self.paddle_graph.add_layer(
            "paddle.multiply",
S
SunAhong1993 已提交
1822
            inputs={'x': val_y.name,
S
SunAhong1993 已提交
1823 1824 1825 1826 1827 1828 1829
                    'y': cast_not_condition},
            outputs=[mul_val_y])

        self.paddle_graph.add_layer(
            "paddle.add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
S
SunAhong1993 已提交
1830
            outputs=[node.name])
S
SunAhong1993 已提交
1831 1832 1833 1834 1835 1836 1837

    @print_mapping_info
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            self.paddle_graph.add_layer(
1838 1839
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1840
                outputs=[val_x.name])
S
SunAhong1993 已提交
1841 1842
            self.paddle_graph.add_layer(
                "paddle.transpose",
S
SunAhong1993 已提交
1843
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1844
                outputs=[node.layer_name],
S
SunAhong1993 已提交
1845 1846 1847
                perm=[1, 0])
        if val_x_dim > 1:
            self.paddle_graph.add_layer(
1848 1849
                "paddle.nonzero",
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1850
                outputs=[val_x.name])
S
SunAhong1993 已提交
1851 1852
            self.paddle_graph.add_layer(
                "paddle.split",
1853
                inputs={"x": val_x.name},
S
SunAhong1993 已提交
1854
                outputs=[val_x.name],
S
SunAhong1993 已提交
1855 1856 1857
                num_or_sections=1,
                axis=val_x_dim)
            self.paddle_graph.add_layer(
1858
                "paddle.concat", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1859 1860 1861 1862 1863

    @print_mapping_info
    def Identity(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
1864
            "paddle.assign", inputs={"x": val_x.name}, outputs=[node.name])
S
SunAhong1993 已提交
1865 1866 1867 1868 1869 1870 1871 1872

    @print_mapping_info
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)

        if repeats is None:
S
SunAhong1993 已提交
1873
            repeats = val_repeats.name
S
SunAhong1993 已提交
1874 1875 1876 1877
            if val_repeats.dtype != 'int32':
                self.paddle_graph.add_layer(
                    "paddle.cast",
                    inputs={"x": repeats},
1878
                    outputs=["{}_tmp".format(repeats)],
S
SunAhong1993 已提交
1879
                    dtype=string("int32"))
1880
                repeats = "{}_tmp".format(repeats)
S
SunAhong1993 已提交
1881 1882 1883 1884

        elif isinstance(repeats, int):
            repeats = [repeats]

1885 1886 1887
        elif type(repeats) is np.ndarray:
            repeats = repeats.tolist()

S
SunAhong1993 已提交
1888 1889
        attr = {
            'expand_times': repeats,
S
SunAhong1993 已提交
1890
            "name": string(node.name),
S
SunAhong1993 已提交
1891 1892
        }
        self.paddle_graph.add_layer(
1893 1894 1895 1896
            "paddle.tile",
            inputs={"x": val_x.name},
            outputs=[node.name],
            repeat_times=repeats)
S
SunAhong1993 已提交
1897 1898 1899 1900

    @print_mapping_info
    def MaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1901
        output_name = node.name
S
SunAhong1993 已提交
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        paddle_op = 'paddle.nn.MaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'

        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            input_shape = val_x.out_shapes[0]
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
1926

S
SunAhong1993 已提交
1927 1928 1929 1930 1931 1932 1933
        layer_attrs = {
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "ceil_mode": ceil_mode,
        }
        self.paddle_graph.add_layer(
1934 1935 1936
            paddle_op,
            inputs={'x': val_x if isinstance(val_x, str) else val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1937 1938 1939 1940 1941
            **layer_attrs)

    @print_mapping_info
    def GlobalMaxPool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1942
        output_name = node.name
S
SunAhong1993 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveMaxPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
1956 1957 1958
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1959 1960 1961 1962 1963
            output_size=output_shape[2:])

    @print_mapping_info
    def GlobalAveragePool(self, node):
        op_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
1964
        output_name = node.name
S
SunAhong1993 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = val_x.out_shapes[0]
        if len(input_shape) == 4:
            poolnd = 2
        elif len(input_shape) == 5:
            poolnd = 3
        elif len(input_shape) == 3:
            poolnd = 1
        paddle_op = 'paddle.nn.AdaptiveAvgPool{}D'.format(poolnd)
        assert 1 <= poolnd <= 3, 'only Pool1D, Pool2D and Pool3D are supported'
        output_shape = node.out_shapes[0]
        self.paddle_graph.add_layer(
1978 1979 1980
            paddle_op,
            inputs={'x': val_x.name},
            outputs=layer_outputs,
S
SunAhong1993 已提交
1981 1982 1983 1984 1985
            output_size=output_shape[2:])

    @print_mapping_info
    def Conv(self, node):
        op_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
1986
        output_name = node.name
S
SunAhong1993 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        has_bias = len(node.layer.input) == 3
        if has_bias:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

        kernel_shape = node.get_attr('kernel_shape')
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2D and Conv3D is supported'
        num_out_channels = val_w.out_shapes[0][0]
        num_in_channels = val_w.out_shapes[0][1]
        paddle_op = 'paddle.nn.Conv{}D'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))

        input_shape = val_x.out_shapes[0]
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w

S
fix  
SunAhong1993 已提交
2017
        layer_inputs = {'x': val_x if isinstance(val_x, str) else val_x.name}
S
SunAhong1993 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026
        layer_attrs = {
            "in_channels": num_in_channels * num_groups,
            "out_channels": num_out_channels,
            "kernel_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
        }
2027
        remove_weight = True if val_w.name in self.done_weight_list else False
C
Channingss 已提交
2028 2029
        if remove_weight:
            self.done_weight_list.append(val_w.name)
2030 2031
        _rename_or_remove_weight(self.weights, val_w.name, op_name + '.weight',
                                 remove_weight)
S
SunAhong1993 已提交
2032
        if has_bias:
C
Channingss 已提交
2033 2034 2035
            remove_bias = True if val_b.name in self.done_weight_list else False
            if remove_bias:
                self.done_weight_list.append(val_b_name)
2036 2037
            _rename_or_remove_weight(self.weights, val_b.name,
                                     op_name + '.bias', remove_bias)
S
SunAhong1993 已提交
2038 2039
        else:
            layer_attrs["bias_attr"] = False
2040 2041
        if reduce(lambda x, y: x * y,
                  input_shape) in [1, -1] and 1 not in input_shape:
S
fix  
SunAhong1993 已提交
2042 2043 2044 2045
            input_shape[1] = num_in_channels * num_groups
            input_shape[0] = 0
            input_shape[2] = 0
            self.paddle_graph.add_layer(
2046 2047 2048
                "paddle.reshape",
                inputs=layer_inputs,
                outputs=[layer_inputs["x"]],
S
fix  
SunAhong1993 已提交
2049
                shape=input_shape)
S
SunAhong1993 已提交
2050
        self.paddle_graph.add_layer(
2051 2052 2053
            paddle_op,
            inputs=layer_inputs,
            outputs=layer_outputs,
S
SunAhong1993 已提交
2054 2055 2056 2057
            **layer_attrs)

    @print_mapping_info
    def ConvTranspose(self, node):
2058 2059 2060
        op_name = name_generator("conv_trans", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
S
SunAhong1993 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = None
        if len(node.layer.input) > 2:
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
        kernel_shape = node.get_attr('kernel_shape')
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only Conv2DTranspose and Conv3DTranspose supported'
        num_in_channels = val_w.out_shapes[0][0]
        num_out_channels = val_w.out_shapes[0][1]
2074
        paddle_op = 'paddle.nn.Conv{}DTranspose'.format(convnd)
S
SunAhong1993 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]

        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
                              kernel_shape[0] - 1) + 1 + out_padding[0]
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
                              kernel_shape[1] - 1) + 1 + out_padding[1]
2092

S
fix  
SunAhong1993 已提交
2093
        # Conv2DTranspose缺少output_size,只能在forward里头传进output_size
2094
        inputs_dict = {'x': val_x if isinstance(val_x, str) else val_x.name}
S
SunAhong1993 已提交
2095
        layer_attrs = {
2096
            "in_channels": num_in_channels,
S
SunAhong1993 已提交
2097
            "out_channels": num_out_channels * num_groups,
2098
            "kernel_size": kernel_shape,
S
fix  
SunAhong1993 已提交
2099 2100 2101
            "stride": strides,
            "dilation": dilations,
            "padding": paddings,
2102
            "groups": num_groups,
2103 2104 2105 2106 2107 2108 2109
            "output_padding": out_padding
        }

        _rename_or_remove_weight(
            self.weights,
            val_w.name,
            op_name + '.weight', )
S
fix  
SunAhong1993 已提交
2110
        if val_b is not None:
2111 2112
            _rename_or_remove_weight(self.weights, val_b.name,
                                     op_name + '.bias')
S
SunAhong1993 已提交
2113
        self.paddle_graph.add_layer(
2114
            kernel=paddle_op,
S
fix  
SunAhong1993 已提交
2115
            inputs=inputs_dict,
2116
            outputs=layer_outputs,
S
SunAhong1993 已提交
2117
            **layer_attrs)
2118

S
fix  
SunAhong1993 已提交
2119 2120 2121 2122 2123
    @print_mapping_info
    def ArgMax(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axis = node.get_attr('axis')
        keepdims = False if node.get_attr('keepdims') == 0 else True
2124
        layer_attrs = {'axis': axis, 'keepdim': keepdims}
S
fix  
SunAhong1993 已提交
2125
        self.paddle_graph.add_layer(
2126 2127
            'paddle.argmax',
            inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2128
            outputs=[node.name],
C
Channingss 已提交
2129 2130 2131
            **layer_attrs)

    @print_mapping_info
S
SunAhong1993 已提交
2132 2133 2134
    def Size(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2135
            "paddle.shape", inputs={"input": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2136 2137 2138 2139
        self.paddle_graph.add_layer(
            'paddle.cast',
            inputs={"x": node.name},
            outputs=[node.name],
2140
            dtype=string('int64'))
S
SunAhong1993 已提交
2141
        self.paddle_graph.add_layer(
2142 2143
            "paddle.prod", inputs={"x": node.name}, outputs=[node.name])

S
SunAhong1993 已提交
2144 2145 2146
    @print_mapping_info
    def Sign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
S
fix  
SunAhong1993 已提交
2147 2148
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2149 2150
                "paddle.cast",
                inputs={"x": val_x.name},
S
fix  
SunAhong1993 已提交
2151 2152
                outputs=[val_x.name],
                dtype=string("float32"))
S
SunAhong1993 已提交
2153
        self.paddle_graph.add_layer(
2154
            "paddle.sign", inputs={"x": val_x.name}, outputs=[node.name])
S
fix  
SunAhong1993 已提交
2155 2156
        if node.dtype not in ["float16", "float32", "float64"]:
            self.paddle_graph.add_layer(
2157 2158
                "paddle.cast",
                inputs={"x": node.name},
S
fix  
SunAhong1993 已提交
2159 2160
                outputs=[node.name],
                dtype=string(node.dtype))
2161

S
SunAhong1993 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
    @print_mapping_info
    def OneHot(self, node):
        nn_op_name = name_generator("onehot", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        indices = self.graph.get_input_node(node, idx=0, copy=True)
        depth = self.graph.get_input_node(node, idx=1, copy=True)
        values = self.graph.get_input_node(node, idx=2, copy=True)
        axis = node.get_attr('axis', -1)
        self.paddle_graph.add_layer(
2172 2173 2174 2175 2176 2177
            "custom_layer:OneHot",
            inputs={
                "indices": indices.name,
                "depth": depth.name,
                "values": values.name
            },
S
SunAhong1993 已提交
2178 2179
            outputs=layer_outputs,
            axis=axis)
2180

S
SunAhong1993 已提交
2181 2182 2183 2184
    @print_mapping_info
    def Reciprocal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        self.paddle_graph.add_layer(
2185
            "paddle.reciprocal", inputs={"x": val_x.name}, outputs=[node.name])
C
Channingss 已提交
2186

2187 2188
    @print_mapping_info
    def LSTM(self, node):
C
Channingss 已提交
2189 2190 2191 2192 2193 2194
        x = self.graph.get_input_node(node, idx=0, copy=True)
        input_weight = self.graph.get_input_node(node, idx=1, copy=True)
        hidden_weight = self.graph.get_input_node(node, idx=2, copy=True)

        input_nums = len(node.layer.input)
        exist_input_nums = 3
2195
        have_bias = False
C
Channingss 已提交
2196
        if input_nums > 3 and node.layer.input[3] != '':
2197 2198
            bias = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2199
            have_bias = True
C
Channingss 已提交
2200 2201
            exist_input_nums += 1
        if input_nums > 4 and node.layer.input[4] != '':
2202 2203
            sequence_lens = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
C
Channingss 已提交
2204 2205
            exist_input_nums += 1
        if input_nums > 5 and node.layer.input[5] != '':
2206 2207
            init_h = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2208 2209 2210 2211
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_h.name},
                outputs=[init_h.name],
2212
                shape=init_h.out_shapes[0])
C
Channingss 已提交
2213 2214
            exist_input_nums += 1
        if input_nums > 6 and node.layer.input[6] != '':
2215 2216
            init_c = self.graph.get_input_node(
                node, idx=exist_input_nums, copy=True)
2217 2218 2219 2220
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": init_c.name},
                outputs=[init_c.name],
2221
                shape=init_c.out_shapes[0])
C
Channingss 已提交
2222 2223

        input_weight_np = _const_weight_or_none(input_weight)
C
Channingss 已提交
2224
        _rename_or_remove_weight(self.weights, input_weight.name)
2225
        hidden_size = node.get_attr('hidden_size', input_weight_np.shape[1] / 4)
C
Channingss 已提交
2226 2227
        input_size = input_weight_np.shape[2]
        hidden_weight_np = _const_weight_or_none(hidden_weight)
C
Channingss 已提交
2228
        _rename_or_remove_weight(self.weights, hidden_weight.name)
C
Channingss 已提交
2229
        bias_np = _const_weight_or_none(bias)
C
Channingss 已提交
2230
        _rename_or_remove_weight(self.weights, bias.name)
2231 2232
        input_bias_np = bias_np[:, :4 * hidden_size]
        hidden_bias_np = bias_np[:, 4 * hidden_size:]
2233 2234 2235 2236 2237 2238

        # parameters order in paddle:lstm:
        # 1. gate order in paddle is: input, forget, cell, output.
        # 2. gate orfer in onnx is: input, output, forget, cell.

        def reform_weights(w, n, intervals):
2239
            slices = [w[:, x * n:y * n] for x, y in intervals]
2240
            return np.concatenate(slices, axis=1)
C
Channingss 已提交
2241

2242 2243 2244 2245
        def transform_weight_with_bias(weights, n, intervals):
            return [reform_weights(w, n, intervals) for w in weights]

        reform_permutation = [(0, 1), (2, 4), (1, 2)]
C
Channingss 已提交
2246

C
Channingss 已提交
2247
        weights = transform_weight_with_bias(
C
Channingss 已提交
2248 2249 2250 2251 2252
            [input_weight_np, hidden_weight_np, input_bias_np, hidden_bias_np],
            hidden_size, reform_permutation)

        op_name = name_generator("lstm", self.nn_name2id)
        y_out = node.output(0)
2253
        yh_out = node.output(1)
C
Channingss 已提交
2254
        yc_out = node.output(2)
2255
        direction = node.get_attr('direction', 'forward')
C
Channingss 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

        def generate_paddle_param_names(op_name, suffix=''):
            param_names = []
            param_names.extend(['{}.weight_ih_l0{}', '{}.weight_hh_l0{}'])
            if have_bias != False: param_names.append('{}.bias_ih_l0{}')
            if have_bias != False: param_names.append('{}.bias_hh_l0{}')
            param_names = [x.format(op_name, suffix) for x in param_names]
            return param_names

        def assign_params(op_name, weights, weight_idx=0, suffix=''):
            param_names = generate_paddle_param_names(op_name, suffix)
            for param_name, weight in zip(param_names, weights):
                self.weights[param_name] = weight[weight_idx]

2270
        if direction == 'backward':
2271 2272 2273
            raise Exception(
                "LSTM support 'forward' or 'bidirectional', except '{}'.".
                format(direction))
2274
        else:
C
Channingss 已提交
2275 2276 2277
            assign_params(op_name, weights)
            if direction == 'bidirectional':
                assign_params(op_name, weights, 1, '_reverse')
2278

C
Channingss 已提交
2279
        self.paddle_graph.add_layer(
2280 2281 2282 2283 2284
            'paddle.nn.LSTM',
            inputs={
                'input': x.name,
                'initial_states': (init_h.name, init_c.name)
            },
C
Channingss 已提交
2285 2286 2287 2288
            outputs=[op_name, y_out, yh_out, yc_out],
            input_size=input_size,
            hidden_size=hidden_size,
            num_layers=1,
2289
            direction=string(direction),
C
Channingss 已提交
2290 2291 2292 2293 2294 2295
            time_major=True)

        self.paddle_graph.add_layer(
            'paddle.reshape',
            inputs={"x": y_out},
            outputs=[y_out],
2296
            shape=[0, 0, -1, hidden_size])
C
Channingss 已提交
2297 2298 2299 2300
        self.paddle_graph.add_layer(
            'paddle.transpose',
            inputs={"x": y_out},
            outputs=[y_out],
2301 2302
            perm=[0, 2, 1, 3])

S
SunAhong1993 已提交
2303 2304 2305 2306
    @print_mapping_info
    def TopK(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_k = self.graph.get_input_node(node, idx=1, copy=True)
2307 2308 2309 2310 2311 2312
        if val_k.dtype != "int32":
            self.paddle_graph.add_layer(
                "paddle.cast",
                inputs={"x": val_k.name},
                outputs=[val_k.name],
                dtype=string('int32'))
S
SunAhong1993 已提交
2313 2314
        layer_attrs = dict()
        layer_attrs["axis"] = node.get_attr('axis', -1)
2315 2316 2317 2318
        layer_attrs["largest"] = True if node.get_attr('largest',
                                                       1) == 1 else False
        layer_attrs["sorted"] = True if node.get_attr('sorted',
                                                      1) == 1 else False
S
SunAhong1993 已提交
2319
        self.paddle_graph.add_layer(
2320
            "paddle.topk",
S
SunAhong1993 已提交
2321
            inputs={"x": val_x.name,
2322 2323 2324 2325 2326
                    "k": val_k.name},
            outputs=[
                "{}_p{}".format(node.layer_name, 0),
                "{}_p{}".format(node.layer_name, 1)
            ],
S
SunAhong1993 已提交
2327
            **layer_attrs)
2328

S
add lrn  
SunAhong1993 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    @print_mapping_info
    def LRN(self, node):
        op_name = name_generator("lrn", self.nn_name2id)
        output_name = node.name
        layer_outputs = [op_name, output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        alpha = node.get_attr('alpha', 0.0001)
        beta = node.get_attr('beta', 0.75)
        bias = node.get_attr('bias', 1.0)
        size = node.get_attr('size')
2339
        layer_attrs = {'size': size, 'alpha': alpha, 'beta': beta, 'k': bias}
S
add lrn  
SunAhong1993 已提交
2340
        self.paddle_graph.add_layer(
W
WJJ1995 已提交
2341
            "paddle.nn.LocalResponseNorm",
2342 2343
            inputs={"x": val_x.name},
            outputs=layer_outputs,
S
add lrn  
SunAhong1993 已提交
2344
            **layer_attrs)
2345

S
SunAhong1993 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
    @print_mapping_info
    def DepthToSpace(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        blocksize = node.get_attr('blocksize')
        mode = node.get_attr('mode', "DCR")
        val_x_shape = val_x.out_shapes[0]
        b, c, h, w = val_x_shape
        if mode == "DCR":
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2358
                shape=[b, blocksize, blocksize, c // (blocksize**2), h, w])
S
SunAhong1993 已提交
2359 2360 2361 2362
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2363
                perm=[0, 3, 4, 1, 5, 2])
S
SunAhong1993 已提交
2364 2365 2366 2367
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2368
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])
S
SunAhong1993 已提交
2369 2370 2371 2372 2373
        else:
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": val_x.name},
                outputs=[node.name],
2374
                shape=[b, c // (blocksize**2), blocksize, blocksize, h, w])
S
SunAhong1993 已提交
2375 2376 2377 2378
            self.paddle_graph.add_layer(
                'paddle.transpose',
                inputs={"x": node.name},
                outputs=[node.name],
2379
                perm=[0, 1, 4, 2, 5, 3])
S
SunAhong1993 已提交
2380 2381 2382 2383
            self.paddle_graph.add_layer(
                'paddle.reshape',
                inputs={"x": node.name},
                outputs=[node.name],
2384 2385 2386 2387 2388 2389 2390 2391 2392
                shape=[b, c // (blocksize**2), h * blocksize, w * blocksize])

    @print_mapping_info
    def NonMaxSuppression(self, node):
        nn_op_name = name_generator("nms", self.nn_name2id)
        output_name = node.name
        layer_outputs = [nn_op_name, output_name]
        boxes = self.graph.get_input_node(node, idx=0, copy=True)
        scores = self.graph.get_input_node(node, idx=1, copy=True)
2393
        num_classes = scores.out_shapes[0][1]
2394 2395 2396 2397 2398
        inputs_len = len(node.layer.input)
        layer_attrs = dict()
        if inputs_len > 2:
            max_output_boxes_per_class = self.graph.get_input_node(
                node, idx=2, copy=True)
2399 2400
            layer_attrs["keep_top_k"] = _const_weight_or_none(
                max_output_boxes_per_class).tolist()[0] * num_classes
2401
        else:
2402
            layer_attrs["keep_top_k"] = 0
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
        if inputs_len > 3:
            iou_threshold = self.graph.get_input_node(node, idx=3, copy=True)
            layer_attrs["nms_threshold"] = _const_weight_or_none(
                iou_threshold).tolist()[0]
        else:
            layer_attrs["nms_threshold"] = 0.0
        if inputs_len > 4:
            score_threshold = self.graph.get_input_node(node, idx=4, copy=True)
            layer_attrs["score_threshold"] = _const_weight_or_none(
                score_threshold).tolist()[0]
        else:
            layer_attrs["score_threshold"] = 0.0
        self.paddle_graph.add_layer(
            "custom_layer:NMS",
            inputs={"bboxes": boxes.name,
                    "scores": scores.name},
            outputs=layer_outputs,
            **layer_attrs)
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

    @print_mapping_info
    def ReduceL1(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 1, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)

    @print_mapping_info
    def ReduceL2(self, node):
        output_name = node.name
        layer_outputs = [output_name]
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        keepdims = False if node.get_attr('keepdims') == 0 else True
        layer_attrs = {'p': 2, 'axis': axes, 'keepdim': keepdims}
        self.paddle_graph.add_layer(
            "paddle.norm",
            inputs={"x": val_x.name},
            outputs=layer_outputs,
            **layer_attrs)