caffe_op_mapper.py 48.9 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
import sys
S
SunAhong1993 已提交
16 17 18
import numbers
import numpy as np
from x2paddle.core.util import *
S
SunAhong1993 已提交
19
from x2paddle.core.program import PaddleGraph
S
SunAhong1993 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from x2paddle.decoder.caffe_decoder import CaffeGraphNode


def _adjust_parameters(node):
    data = node.data
    # When using the protobuf-backend, each parameter initially has four dimensions.
    # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
    # This implementation takes care of the common cases. However, it does leave the
    # potential for future issues.
    # The Caffe-backend does not suffer from this problem.
    data = list(data)

    squeeze_indices = [1]  # Squeeze biases.
    if node.layer_type == 'InnerProduct':
        squeeze_indices.append(0)  # Squeeze FC.

    for idx in squeeze_indices:
        if idx >= len(data):
            continue

        d = data[idx]
        assert len(
            d.shape
        ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
            str(d.shape))

        shape_old = d.shape
        sq_axis = None
        if idx == 0:
            sq_axis = (0, 1)
        elif idx == 1:
            sq_axis = (0, 1, 2)
        else:
            continue

        data[idx] = np.squeeze(d, axis=sq_axis)
        shape_new = data[idx].shape
    return data

S
SunAhong1993 已提交
59

S
SunAhong1993 已提交
60
def _get_kernel_parameters(kind, params):
S
SunAhong1993 已提交
61 62 63
    assert kind in [
        "Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"
    ]
S
SunAhong1993 已提交
64
    [k_h, k_w] = [1, 1]
65 66 67 68
    if params.kernel_h > 0 or params.kernel_w > 0:
        k_h = params.kernel_h
        k_w = params.kernel_w
    elif isinstance(params.kernel_size, numbers.Number):
S
SunAhong1993 已提交
69 70
        [k_h, k_w] = [params.kernel_size] * 2
    elif len(params.kernel_size) > 0:
S
SunAhong1993 已提交
71
        k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[0]
S
SunAhong1993 已提交
72 73 74
        k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
            len(params.kernel_size) - 1]
    [s_h, s_w] = [1, 1]
75 76 77 78
    if params.stride_h > 0 or params.stride_w > 0:
        s_h = params.stride_h
        s_w = params.stride_w
    elif isinstance(params.stride, numbers.Number):
S
SunAhong1993 已提交
79 80 81 82 83 84 85 86 87 88
        [s_h, s_w] = [params.stride] * 2
    elif len(params.stride) > 0:
        s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
        s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
            params.stride) - 1]
    [p_h, p_w] = [0, 0]
    if isinstance(params.pad, numbers.Number):
        [p_h, p_w] = [params.pad] * 2
    elif len(params.pad) > 0:
        p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
S
SunAhong1993 已提交
89 90
        p_w = params.pad_w if params.pad_w > 0 else params.pad[len(params.pad) -
                                                               1]
S
SunAhong1993 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    elif params.pad_h > 0 or params.pad_w > 0:
        p_h = params.pad_h
        p_w = params.pad_w
    dila_h = dila_w = 1
    group = 1
    c_o = 1
    if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]:
        if kind in ["Convolution", "Deconvolution"]:
            c_o = params.num_output
        dila_len = len(params.dilation)
        if dila_len == 2:
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
        elif dila_len == 1:
            dila_h = dila_w = params.dilation[0]
        else:
            assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                dila_len)
    if kind in ['Convolution', 'Deconvolution']:
        group = params.group
    kernel = [k_h, k_w]
    stride = [s_h, s_w]
    pad = [p_h, p_w]
    dilation = [dila_h, dila_w]
    return c_o, kernel, stride, pad, dilation, group
S
SunAhong1993 已提交
116 117


S
SunAhong1993 已提交
118
class CaffeOpMapper():
S
SunAhong1993 已提交
119
    directly_map_ops = {
S
SunAhong1993 已提交
120 121
        'Sigmoid': ['paddle.nn.layer.Sigmoid'],
        'TanH': ['paddle.nn.Tanh'],
S
SunAhong1993 已提交
122 123 124 125
    }

    def __init__(self, decoder):
        self.graph = decoder.caffe_graph
S
SunAhong1993 已提交
126 127
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
128
        self.params = dict()
S
SunAhong1993 已提交
129
        self.paddle_graph = PaddleGraph(parent_layer=None, source_type="caffe")
S
SunAhong1993 已提交
130
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
131 132
        self.inputs_info = {}
        self.nn_name2id = {}
S
SunAhong1993 已提交
133 134 135 136 137 138 139 140
        print("Total nodes: {}".format(
            sum([
                isinstance(node, CaffeGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
S
SunAhong1993 已提交
141 142 143 144 145 146 147
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in self.directly_map_ops:
                self.directly_map(node)
S
SunAhong1993 已提交
148
        print("\nNodes converted.")
S
SunAhong1993 已提交
149 150 151
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
152

S
SunAhong1993 已提交
153 154 155 156 157
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
S
SunAhong1993 已提交
158
            if not hasattr(self, op) and op not in self.directly_map_ops:
S
SunAhong1993 已提交
159 160 161 162
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
S
SunAhong1993 已提交
163
            if len(unsupported_ops) > 0:
S
SunAhong1993 已提交
164 165
                print("\n========= {} OPs are not supported yet ===========".
                      format(len(unsupported_ops)))
S
SunAhong1993 已提交
166
            for op in unsupported_ops:
S
SunAhong1993 已提交
167
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
168
            return False
S
SunAhong1993 已提交
169

S
SunAhong1993 已提交
170
    def directly_map(self, node):
171 172
        assert len(
            node.layer.bottom) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
173 174 175
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
176 177
        if paddle_op.startswith("paddle.nn.layer"):
            op_name = paddle_op[16:].lower()
S
SunAhong1993 已提交
178 179 180 181 182 183 184
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
                kernel=paddle_op,
                inputs={"x": input.name},
                outputs=layer_outputs)
S
SunAhong1993 已提交
185
        else:
186 187 188 189 190 191 192 193 194 195 196
            if paddle_op.startswith("paddle.nn") and "layer" not in paddle_op:
                op_name = paddle_op[10:].lower()
                op_name = name_generator(op_name, self.nn_name2id)
                output_name = node.name
                layer_outputs = [op_name, output_name]
                self.paddle_graph.add_layer(
                    kernel=paddle_op,
                    inputs={"x": input.name},
                    outputs=layer_outputs)
            else:
                self.paddle_graph.add_layer(
197 198
                    kernel=paddle_op,
                    inputs={"x": input.name},
199
                    outputs=[node.name])
S
SunAhong1993 已提交
200 201

    def Input(self, node):
S
SunAhong1993 已提交
202
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
203 204 205
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
S
SunAhong1993 已提交
206
            data=node.name)
S
SunAhong1993 已提交
207
        shape = list(node.layer.input_param.shape[0].dim)[1:]
208
        self.inputs_info[node.name] = [[-1] + shape, "float32"]
S
SunAhong1993 已提交
209

S
SunAhong1993 已提交
210 211 212 213 214 215 216
    def MemoryData(self, node):
        params = node.layer.memory_data_param
        transform_params = node.layer.transform_param
        self.paddle_graph.add_layer(
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
S
SunAhong1993 已提交
217
            data=node.layer_name)
S
SunAhong1993 已提交
218 219 220 221 222 223 224 225 226
        shape = list()
        shape.append(params.batch_size)
        shape.append(params.channels)
        if hasattr(transform_params, "crop_size"):
            shape.append(transform_params.crop_size)
            shape.append(transform_params.crop_size)
        else:
            shape.append(params.width)
            shape.append(params.height)
S
SunAhong1993 已提交
227
        self.inputs_info[node.layer_name] = [shape, "float32"]
S
SunAhong1993 已提交
228 229

    def Convolution(self, node):
S
SunAhong1993 已提交
230
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
231 232 233 234
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
235
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
236 237 238 239 240 241 242
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
243 244 245
                np.zeros([
                    out_channel, node.in_shapes[0][1], kernel[0], kernel[1]
                ]).astype('float32'))
S
SunAhong1993 已提交
246 247
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
248
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
249 250 251 252 253
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Convolution node\'s input is not 1."
S
SunAhong1993 已提交
254
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
255
        layer_attrs = {
S
SunAhong1993 已提交
256
            "in_channels": node.in_shapes[0][1],
S
SunAhong1993 已提交
257 258 259 260 261 262 263 264 265
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
266
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
267
            "paddle.nn.Conv2D",
S
SunAhong1993 已提交
268
            inputs={"input": input.name},
S
SunAhong1993 已提交
269 270
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
271

S
SunAhong1993 已提交
272 273 274
    def DepthwiseConvolution(self, node):
        node.layer_type = "ConvolutionDepthwise"
        self.ConvolutionDepthwise(node)
S
SunAhong1993 已提交
275 276

    def Deconvolution(self, node):
S
SunAhong1993 已提交
277
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
278 279 280 281
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
282
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
283 284 285 286 287 288 289
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
290 291 292
                np.zeros([
                    out_channel, node.in_shapes[0][1], kernel[0], kernel[1]
                ]).astype('float32'))
S
SunAhong1993 已提交
293 294
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
295
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
296 297 298 299 300
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
S
SunAhong1993 已提交
301
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
302
        layer_attrs = {
S
SunAhong1993 已提交
303
            "in_channels": node.in_shapes[0][1],
S
SunAhong1993 已提交
304 305 306 307 308 309 310 311 312
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
313
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
314
            "paddle.nn.Conv2DTranspose",
S
SunAhong1993 已提交
315
            inputs={"input": input.name},
S
SunAhong1993 已提交
316 317
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
318

S
SunAhong1993 已提交
319
    def ConvolutionDepthwise(self, node):
S
SunAhong1993 已提交
320
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
321 322 323 324
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
325
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
326
            node.layer_type, params)
S
SunAhong1993 已提交
327 328
        out_channel = params.num_output if params.num_output is not None else node.in_shapes[
            0][1]
S
SunAhong1993 已提交
329
        in_channel = node.in_shapes[0][1]
S
SunAhong1993 已提交
330 331 332
        group = int(in_channel / (
            in_channel / out_channel)) if in_channel > out_channel else int(
                in_channel / (out_channel / in_channel))
S
SunAhong1993 已提交
333 334 335 336 337 338
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
339 340 341
                np.zeros([
                    out_channel, node.in_shapes[0][1], kernel[0], kernel[1]
                ]).astype('float32'))
S
SunAhong1993 已提交
342 343
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
344
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
345 346 347 348 349
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
S
SunAhong1993 已提交
350
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361
        layer_attrs = {
            "in_channels": in_channel,
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
362
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
363
            "paddle.nn.Conv2D",
S
SunAhong1993 已提交
364
            inputs={"input": input.name},
S
SunAhong1993 已提交
365 366 367 368
            outputs=layer_outputs,
            **layer_attrs)

    def Pooling(self, node):
S
SunAhong1993 已提交
369
        pool2d_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
370 371 372
        output_name = node.layer_name
        layer_outputs = [pool2d_name, output_name]
        params = node.layer.pooling_param
S
SunAhong1993 已提交
373 374 375
        ceil_mode = getattr(params, "ceil_mode", True)
        if not hasattr(params, 'ceil_mode'):
            ceil_mode = True if getattr(params, "round_mode", 0) == 0 else False
S
SunAhong1993 已提交
376 377
        global_pool = getattr(params, "global_pooling", False)
        kernel_default = [1, 1]
S
SunAhong1993 已提交
378
        channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
379 380 381 382 383 384 385
            node.layer_type, params)
        if params.pool == 0:
            pool_type = "max"
        else:
            pool_type = "avg"
        assert len(
            node.inputs) == 1, "The count of Pooling node\'s input is not 1."
S
SunAhong1993 已提交
386
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
387 388 389 390
        if global_pool:
            if kernel[0] == 0:
                kernel = [1, 1]
            if params.pool == 0:
S
SunAhong1993 已提交
391
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
392
                    "paddle.nn.AdaptiveMaxPool2D",
S
SunAhong1993 已提交
393
                    inputs={"input": input.name},
S
SunAhong1993 已提交
394 395 396
                    outputs=layer_outputs,
                    output_size=kernel)
            else:
S
SunAhong1993 已提交
397
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
398
                    "paddle.nn.AdaptiveAvgPool2D",
S
SunAhong1993 已提交
399
                    inputs={"input": input.name},
S
SunAhong1993 已提交
400 401
                    outputs=layer_outputs,
                    output_size=kernel)
S
SunAhong1993 已提交
402
        else:
S
SunAhong1993 已提交
403
            layer_attrs = {
S
SunAhong1993 已提交
404 405 406
                'kernel_size': kernel,
                'stride': stride,
                'padding': pad,
S
SunAhong1993 已提交
407 408
                'ceil_mode': ceil_mode,
            }
S
SunAhong1993 已提交
409 410 411 412 413 414 415 416 417 418 419 420
            if params.pool == 0:
                self.paddle_graph.add_layer(
                    "paddle.nn.MaxPool2D",
                    inputs={"input": input.name},
                    outputs=layer_outputs,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.nn.AvgPool2D",
                    inputs={"input": input.name},
                    outputs=layer_outputs,
                    **layer_attrs)
S
SunAhong1993 已提交
421 422

    def LRN(self, node):
S
SunAhong1993 已提交
423 424 425
        lrn_name = name_generator("lrn", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [lrn_name, output_name]
S
SunAhong1993 已提交
426
        assert len(node.inputs) == 1, "The count of LRN node\'s input is not 1."
S
SunAhong1993 已提交
427
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
428 429 430 431
        params = node.layer.lrn_param
        assert params.local_size % 2 == 1
        alpha = params.alpha / float(params.local_size)
        layer_attrs = {
W
wjj19950828 已提交
432
            "size": params.local_size,
S
SunAhong1993 已提交
433
            "alpha": alpha,
S
fix  
SunAhong1993 已提交
434
            "beta": params.beta,
W
wjj19950828 已提交
435
            "k": params.k,
S
SunAhong1993 已提交
436
        }
S
SunAhong1993 已提交
437
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
438
            "paddle.nn.LocalResponseNorm",
S
SunAhong1993 已提交
439
            inputs={"input": input.name},
S
fix  
SunAhong1993 已提交
440
            outputs=[node.layer_name],
S
SunAhong1993 已提交
441 442 443
            **layer_attrs)

    def InnerProduct(self, node):
S
SunAhong1993 已提交
444
        linear_name = name_generator("linear", self.nn_name2id)
S
SunAhong1993 已提交
445 446 447
        output_name = node.layer_name
        layer_outputs = [linear_name, output_name]
        data = node.data
S
SunAhong1993 已提交
448
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
449 450 451 452 453 454 455
        params = node.layer.inner_product_param
        if data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0."
                .format(node.layer_name, node.layer_type))
            data = []
            data.append(
S
SunAhong1993 已提交
456 457
                np.zeros([node.in_shapes[0][1], params.num_output]).astype(
                    "float32").astype("float32"))
S
SunAhong1993 已提交
458
            data.append(
S
SunAhong1993 已提交
459 460
                np.zeros([params.num_output]).astype("float32").astype(
                    "float32"))
S
SunAhong1993 已提交
461
        else:
S
SunAhong1993 已提交
462
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w

        self.params[linear_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[linear_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of InnerProduct node\'s input is not 1."
        assert params.axis == 1
        assert params.bias_term == True
        layer_attrs = {
            "in_features": data[0].shape[0],
S
SunAhong1993 已提交
481
            "out_features": params.num_output
S
SunAhong1993 已提交
482 483 484
        }
        if len(data) == 1:
            layer_attrs["bias"] = False
S
SunAhong1993 已提交
485
        if node.in_shapes[0][-1] != data[0].shape[0]:
S
SunAhong1993 已提交
486
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
487
                "paddle.reshape",
S
SunAhong1993 已提交
488
                inputs={"x": input.name},
S
SunAhong1993 已提交
489 490
                outputs=[output_name],
                shape=[-1, data[0].shape[0]])
S
SunAhong1993 已提交
491
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
492 493 494 495 496
                "paddle.nn.Linear",
                inputs={"input": output_name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
497
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
498
                "paddle.nn.Linear",
S
SunAhong1993 已提交
499
                inputs={"input": input.name},
S
SunAhong1993 已提交
500 501
                outputs=layer_outputs,
                **layer_attrs)
S
SunAhong1993 已提交
502

S
SunAhong1993 已提交
503 504 505 506
    def AbsVal(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of AbsVal node\'s input is not more than 1."
S
SunAhong1993 已提交
507
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
508
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
509
            "paddle.abs",
S
SunAhong1993 已提交
510
            inputs={"input": input.name},
S
SunAhong1993 已提交
511 512 513
            outputs=[node.layer_name])

    def Softmax(self, node):
S
SunAhong1993 已提交
514
        softmax_name = name_generator("softmax", self.nn_name2id)
S
SunAhong1993 已提交
515 516 517 518
        output_name = node.layer_name
        layer_outputs = [softmax_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Softmax node\'s input is not 1."
S
SunAhong1993 已提交
519
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
520 521
        params = node.layer.softmax_param
        axis = params.axis
S
SunAhong1993 已提交
522
        shape = node.in_shapes[0]
S
SunAhong1993 已提交
523 524 525
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
526
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
527
            "paddle.nn.Softmax",
S
SunAhong1993 已提交
528
            inputs={"input": input.name},
S
SunAhong1993 已提交
529 530 531 532 533 534
            outputs=layer_outputs,
            **layer_attrs)

    def Slice(self, node):
        assert len(
            node.inputs) == 1, "The count of Slice node\'s input is not 1."
S
SunAhong1993 已提交
535
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
536 537 538 539 540 541
        top_len = len(node.layer.top)
        params = node.layer.slice_param
        axis = params.axis
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
S
SunAhong1993 已提交
542
        output_shape = node.out_shapes
S
SunAhong1993 已提交
543 544 545
        sections_list = list()
        outputs_list = list()
        for i, s in enumerate(output_shape):
S
SunAhong1993 已提交
546
            sections_list.append(s[axis])
S
SunAhong1993 已提交
547
            outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
548 549
        layer_attrs = {
            'num_or_sections': sections_list,
S
SunAhong1993 已提交
550
            'axis': axis,
S
SunAhong1993 已提交
551
        }
S
SunAhong1993 已提交
552
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
553
            "paddle.split",
S
SunAhong1993 已提交
554
            inputs={"x": input.name},
S
SunAhong1993 已提交
555
            outputs=outputs_list,
S
SunAhong1993 已提交
556 557 558 559 560 561
            **layer_attrs)

    def Concat(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of Concat node\'s input is not more than 1."
S
SunAhong1993 已提交
562
        inputs_list = list()
S
SunAhong1993 已提交
563
        for i in range(len(node.inputs)):
S
SunAhong1993 已提交
564 565
            input = self.graph.get_input_node(node, idx=i, copy=True)
            inputs_list.append(input.name)
S
SunAhong1993 已提交
566 567 568
        params = node.layer.concat_param
        axis = params.axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
569
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
570
            "paddle.concat",
S
SunAhong1993 已提交
571
            inputs={"x": inputs_list},
S
SunAhong1993 已提交
572 573 574 575
            outputs=[node.layer_name],
            **layer_attrs)

    def ReLU(self, node):
S
SunAhong1993 已提交
576
        relu_name = name_generator("relu", self.nn_name2id)
S
SunAhong1993 已提交
577 578 579 580
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU node\'s input is not 1."
S
SunAhong1993 已提交
581
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
582 583 584 585
        params = node.layer.relu_param
        if params.HasField('negative_slope') and params.negative_slope != 0:
            negative_slope = float(params.negative_slope)

586
            layer_attrs = {'negative_slope': negative_slope}
S
SunAhong1993 已提交
587
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
588
                "paddle.nn.LeakyReLU",
S
SunAhong1993 已提交
589
                inputs={"input": input.name},
S
SunAhong1993 已提交
590 591 592
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
593
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
594
                "paddle.nn.ReLU",
S
SunAhong1993 已提交
595
                inputs={"input": input.name},
S
SunAhong1993 已提交
596 597 598
                outputs=layer_outputs)

    def PReLU(self, node):
S
SunAhong1993 已提交
599
        prelu_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
600 601 602 603
        output_name = node.layer_name
        layer_outputs = [prelu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of PReLU node\'s input is not 1."
S
SunAhong1993 已提交
604
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
605 606
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
S
SunAhong1993 已提交
607
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
608
        if mode_bool:
S
SunAhong1993 已提交
609
            num_parameters = 1
S
SunAhong1993 已提交
610
        else:
S
SunAhong1993 已提交
611
            num_parameters = output_shape[1]
S
SunAhong1993 已提交
612 613 614 615
        data = node.data
        self.params[prelu_name + '._weight'] = np.squeeze(data[0])
        assert data is not None, "The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.".format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
616
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
617
            "paddle.nn.PReLU",
S
SunAhong1993 已提交
618
            inputs={"input": input.name},
S
SunAhong1993 已提交
619
            outputs=layer_outputs,
S
SunAhong1993 已提交
620
            num_parameters=num_parameters)
S
SunAhong1993 已提交
621 622

    def Eltwise(self, node):
623 624
        if len(node.layer.
               bottom) == 3 and node.layer.eltwise_param.operation == 1:
625 626 627 628 629 630 631 632 633 634
            inputs_dict = {}
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input1 = self.graph.get_input_node(node, idx=1, copy=True)
            input2 = self.graph.get_input_node(node, idx=2, copy=True)
            input0_name = input0.name
            input1_name = input1.name
            input2_name = input2.name
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
            self.paddle_graph.add_layer(
635 636 637
                "paddle.add",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_1"])
638
            inputs_dict = {}
639
            inputs_dict['x'] = node.layer_name + "_1"
640 641
            inputs_dict['y'] = input2_name
            self.paddle_graph.add_layer(
642
                "paddle.add", inputs=inputs_dict, outputs=[node.layer_name])
643 644
            return

645 646
        assert len(node.layer.
                   bottom) == 2, "The count of Eltwise node\'s input is not 2."
S
SunAhong1993 已提交
647 648 649
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
S
SunAhong1993 已提交
650 651 652 653
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
        input0_name = input0.name
        input1_name = input1.name
S
SunAhong1993 已提交
654 655 656 657
        if mode == 0:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
658
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
659 660 661 662 663 664
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
S
SunAhong1993 已提交
665
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
666
                    "paddle.scale",
S
SunAhong1993 已提交
667 668
                    inputs={"x": input0_name},
                    outputs=[node.layer_name + '_mul0'],
S
SunAhong1993 已提交
669
                    scale=coeff[0])
S
SunAhong1993 已提交
670
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
671
                    "paddle.scale",
S
SunAhong1993 已提交
672 673
                    inputs={"x": input1_name},
                    outputs=[node.layer_name + '_mul1'],
S
SunAhong1993 已提交
674
                    scale=coeff[1])
S
SunAhong1993 已提交
675 676 677
                inputs_dict = {}
                inputs_dict['x'] = node.layer_name + '_mul0'
                inputs_dict['y'] = node.layer_name + '_mul1'
S
SunAhong1993 已提交
678
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
679
                    "paddle.add", inputs=inputs_dict,
S
SunAhong1993 已提交
680 681 682 683 684
                    outputs=[node.layer_name])
            else:
                inputs_dict = {}
                inputs_dict['x'] = input0_name
                inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
685
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
686
                    "paddle.add", inputs=inputs_dict,
S
SunAhong1993 已提交
687 688 689 690 691
                    outputs=[node.layer_name])
        else:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
692
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
693
                "paddle.max", inputs=inputs_dict, outputs=[node.layer_name])
S
SunAhong1993 已提交
694 695

    def BatchNorm(self, node):
S
SunAhong1993 已提交
696
        batchnorm_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
697 698 699 700
        output_name = node.layer_name
        layer_outputs = [batchnorm_name, output_name]
        assert len(
            node.inputs) == 1, "The count of BatchNorm node\'s input is not 1."
S
SunAhong1993 已提交
701
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
702 703 704 705 706 707 708 709 710
        params = node.layer.batch_norm_param
        if hasattr(params, "eps"):
            eps = params.eps
        else:
            eps = 1e-5
        if node.data is None or len(node.data) != 3:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
711 712
            mean = np.zeros([node.in_shapes[0][1], ]).astype("float32")
            variance = np.zeros([node.in_shapes[0][1], ]).astype("float32")
S
SunAhong1993 已提交
713 714 715 716 717 718 719 720 721 722 723 724
            scale = 0
        else:

            node.data = [np.squeeze(i).astype("float32") for i in node.data]
            mean, variance, scale = node.data
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.params[batchnorm_name + "._mean"] = mean
        self.params[batchnorm_name + '._variance'] = variance
        layer_attrs = {
S
SunAhong1993 已提交
725
            "num_features": node.in_shapes[0][1],
S
SunAhong1993 已提交
726 727 728 729
            "epsilon": eps,
            "weight_attr": False,
            "bias_attr": False,
        }
S
SunAhong1993 已提交
730 731 732 733 734
        if len(node.in_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": input.name},
                outputs=[input.name],
S
SunAhong1993 已提交
735
                axis=[2, 3])
S
SunAhong1993 已提交
736
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
737
            "paddle.nn.BatchNorm2D",
S
SunAhong1993 已提交
738
            inputs={"input": input.name},
S
SunAhong1993 已提交
739 740
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
741 742 743 744 745
        if len(node.in_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                "paddle.squeeze",
                inputs={"x": node.layer_name},
                outputs=[node.layer_name],
S
SunAhong1993 已提交
746 747
                axis=[2, 3])

S
SunAhong1993 已提交
748 749 750 751 752
    def Scale(self, node):
        if node.data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
753
            self.params[node.layer_name + "_cparam1"] = np.zeros([
S
SunAhong1993 已提交
754
                node.in_shapes[0][1],
S
SunAhong1993 已提交
755
            ]).astype("float32")
S
SunAhong1993 已提交
756
            self.params[node.layer_name + "_cparam2"] = np.zeros([
S
SunAhong1993 已提交
757
                node.in_shapes[0][1],
S
SunAhong1993 已提交
758 759
            ]).astype("float32")
        else:
S
SunAhong1993 已提交
760
            self.params[node.layer_name + "_cparam1"] = np.squeeze(node.data[
S
SunAhong1993 已提交
761
                0]).astype("float32")
S
SunAhong1993 已提交
762 763 764 765 766
            if not node.layer.scale_param.bias_term:
                self.params[node.layer_name + "_cparam2"] = np.zeros([
                    node.in_shapes[0][1],
                ]).astype("float32")
            else:
S
SunAhong1993 已提交
767 768
                self.params[node.layer_name + "_cparam2"] = np.squeeze(
                    node.data[1]).astype("float32")
S
SunAhong1993 已提交
769 770
        params = node.layer.scale_param
        axis = params.axis
W
wjj19950828 已提交
771 772
        if axis < 0:
            axis += len(node.in_shapes[0])
S
SunAhong1993 已提交
773
        if len(node.inputs) == 2:
S
SunAhong1993 已提交
774 775 776 777
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input1 = self.graph.get_input_node(node, idx=1, copy=True)
            input0_name = input0.name
            input1_name = input1.name
S
SunAhong1993 已提交
778 779 780 781
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
        else:
S
SunAhong1993 已提交
782 783
            self.paddle_graph.add_layer(
                "self.create_parameter",
S
SunAhong1993 已提交
784 785
                inputs={},
                outputs=[node.layer_name + "_cparam1"],
S
SunAhong1993 已提交
786 787
                shape=self.params[node.layer_name + "_cparam1"].shape,
                attr=string(node.layer_name + "_cparam1"))
S
SunAhong1993 已提交
788 789
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input0_name = input0.name
S
SunAhong1993 已提交
790 791 792
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = node.layer_name + "_cparam1"
W
wjj19950828 已提交
793 794 795 796 797 798
        if axis == len(node.in_shapes[0]) - 1:
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"])
        else:
W
wjj19950828 已提交
799 800
            new_shape = [1] * len(node.in_shapes[0])
            new_shape[axis] = node.in_shapes[0][1]
W
wjj19950828 已提交
801
            self.paddle_graph.add_layer(
W
wjj19950828 已提交
802 803 804 805 806 807
                "paddle.reshape",
                inputs={"x": node.layer_name + "_cparam1"},
                outputs=[node.layer_name + "_cparam1"],
                shape=new_shape)
            self.paddle_graph.add_layer(
                "paddle.multiply",
W
wjj19950828 已提交
808
                inputs=inputs_dict,
W
wjj19950828 已提交
809
                outputs=[node.layer_name + "_mul"])
S
SunAhong1993 已提交
810 811 812 813 814 815
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[node.layer_name + "_cparam2"],
            shape=self.params[node.layer_name + "_cparam2"].shape,
            attr=string(node.layer_name + "_cparam2"))
S
SunAhong1993 已提交
816 817 818
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = node.layer_name + "_cparam2"
S
SunAhong1993 已提交
819
        output_shape = node.out_shapes[0]
W
wjj19950828 已提交
820
        if axis == len(output_shape) - 1:
S
SunAhong1993 已提交
821
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
822
                "paddle.add", inputs=inputs_dict, outputs=[node.layer_name])
S
SunAhong1993 已提交
823 824 825 826
        else:
            param2_shape = self.params[node.layer_name + "_cparam2"].shape
            param2_shape_len = len(param2_shape)
            diff_len = len(output_shape) - axis - param2_shape_len
S
SunAhong1993 已提交
827
            new_shape = list(param2_shape) + [1] * diff_len
S
SunAhong1993 已提交
828 829 830 831 832 833
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.layer_name + "_cparam2"},
                outputs=[node.layer_name + "_cparam2"],
                shape=new_shape)
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
834 835
                "paddle.add", inputs=inputs_dict, outputs=[node.layer_name])

S
SunAhong1993 已提交
836
    def Reshape(self, node):
S
SunAhong1993 已提交
837 838
        input = self.graph.get_input_node(node, idx=0, copy=True)
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
839
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
840
            "paddle.reshape",
S
SunAhong1993 已提交
841
            inputs={"x": input.name},
S
SunAhong1993 已提交
842
            outputs=[node.layer_name],
S
SunAhong1993 已提交
843
            shape=output_shape)
S
SunAhong1993 已提交
844 845 846 847 848

    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of ArgMax node\'s input and output is not 1."
S
SunAhong1993 已提交
849 850
        input = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
851 852 853 854
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
S
SunAhong1993 已提交
855
        axis = params.axis if hasattr(params, axis) else -1
S
SunAhong1993 已提交
856 857 858
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
S
SunAhong1993 已提交
859
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
860
                "paddle.topk",
S
SunAhong1993 已提交
861
                inputs={"x": input.name},
S
SunAhong1993 已提交
862 863 864 865
                outputs=[
                    node.layer_name + "_topk_var",
                    node.layer_name + "_index_var"
                ],
S
SunAhong1993 已提交
866
                k=top_k)
S
SunAhong1993 已提交
867
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
868 869 870 871
                "paddle.cast",
                inputs={"x": node.layer_name + "_index_var"},
                outputs=[node.layer_name + "_index_var"],
                dtype="{}_topk_var.dtype".format(node.layer_name))
S
SunAhong1993 已提交
872
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
873
                "paddle.concat",
S
SunAhong1993 已提交
874 875 876 877 878 879
                inputs={
                    "x": [
                        node.layer_name + "_topk_var",
                        node.layer_name + "_index_var"
                    ]
                },
S
SunAhong1993 已提交
880 881 882
                outputs=[node.layer_name],
                axis=axis)
        else:
S
SunAhong1993 已提交
883
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
884
                "paddle.topk",
S
SunAhong1993 已提交
885
                inputs={"x": input.name},
S
SunAhong1993 已提交
886 887
                outputs=["_", node.layer_name],
                k=top_k)
S
SunAhong1993 已提交
888

S
SunAhong1993 已提交
889 890 891 892
    def Axpy(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of Axpy node\'s input and output is not 1."
S
SunAhong1993 已提交
893
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
894
        params = node.layer.axpy_param
S
SunAhong1993 已提交
895 896 897 898 899 900
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
        input2 = self.graph.get_input_node(node, idx=2, copy=True)
        input0_name = input0.name
        input1_name = input1.name
        input2_name = input2.name
S
SunAhong1993 已提交
901 902 903
        inputs_dict = {}
        inputs_dict['x'] = input1_name
        inputs_dict['y'] = input0_name
S
SunAhong1993 已提交
904
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
905 906 907 908 909 910 911
            "paddle.multiply",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"],
            axis=0)
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = input2_name
S
SunAhong1993 已提交
912
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
913 914 915 916 917 918 919
            "paddle.add",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"])

    def Crop(self, node):
        assert len(
            node.inputs) == 2, "The count of Crop node\'s input is not 2."
S
SunAhong1993 已提交
920 921
        input = self.graph.get_input_node(node, idx=0, copy=True)
        example = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
922 923
        params = node.layer.crop_param
        axis = params.axis
S
SunAhong1993 已提交
924
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
925 926 927 928
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, "offset") and len(params.offset) > 0:
929
            offset_origin = list(params.offset)
930
            if len(offset_origin) == 1:
931
                offset = offset_origin * (len(input_shape) - axis)
S
SunAhong1993 已提交
932 933 934 935
            assert (len(input_shape) - axis
                    ) == len(offset), "invalid offset[%s] in crop layer" % (
                        str(offset))
            offset_real = [0] * axis + offset
W
wjj19950828 已提交
936 937 938 939
        if axis > 0:
            crop_shape = node.in_shapes[0][:axis] + node.in_shapes[1][axis:]
        else:
            crop_shape = node.in_shapes[1]
S
SunAhong1993 已提交
940
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
941 942 943
            "paddle.crop",
            inputs={"x": input.name},
            outputs=[node.layer_name],
W
wjj19950828 已提交
944
            shape=crop_shape,
S
SunAhong1993 已提交
945
            offsets=list(offset_real))
S
SunAhong1993 已提交
946 947 948 949 950

    def Flatten(self, node):
        assert len(
            node.
            inputs) == 1, "The count of DetectionOutput node\'s input is not 1."
S
SunAhong1993 已提交
951
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
952
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
953
            "paddle.reshape",
S
SunAhong1993 已提交
954
            inputs={"x": input.name},
S
SunAhong1993 已提交
955
            outputs=[node.layer_name],
S
SunAhong1993 已提交
956
            shape=node.out_shapes[0])
S
SunAhong1993 已提交
957 958 959 960

    def Power(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
S
SunAhong1993 已提交
961
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
962 963 964 965 966 967
        params = node.layer.power_param
        layer_attrs = {
            'scale': params.scale,
            'bias': params.shift,
            'bias_after_scale': True
        }
S
SunAhong1993 已提交
968
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
969
            "paddle.scale",
S
SunAhong1993 已提交
970
            inputs={"x": input.name},
S
SunAhong1993 已提交
971 972
            outputs=[node.layer_name],
            **layer_attrs)
W
WJJ1995 已提交
973 974 975 976 977 978
        if params.power != 1:
            self.paddle_graph.add_layer(
                "paddle.pow",
                inputs={"x": node.layer_name,
                        "y": params.power},
                outputs=[node.layer_name])
S
SunAhong1993 已提交
979 980 981 982

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, "The count of Reduction node\'s input is not 1."
S
SunAhong1993 已提交
983
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
984 985 986 987 988 989
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
S
SunAhong1993 已提交
990
        input_len = len(node.in_shapes[0])
S
SunAhong1993 已提交
991 992 993 994
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        # operation = SUM
S
SunAhong1993 已提交
995
        if operation == 1:
S
SunAhong1993 已提交
996 997 998 999
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
1000
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1001
                "paddle.sum",
S
SunAhong1993 已提交
1002
                inputs={"input": input.name},
S
SunAhong1993 已提交
1003 1004 1005
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = ASUM
S
SunAhong1993 已提交
1006
        elif operation == 2:
S
SunAhong1993 已提交
1007
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1008
                "paddle.abs",
S
SunAhong1993 已提交
1009
                inputs={"x": input.name},
S
SunAhong1993 已提交
1010 1011 1012 1013 1014
                outputs=[node.layer_name])
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
1015
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1016 1017 1018 1019 1020
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = SUMSQ
S
SunAhong1993 已提交
1021
        elif operation == 3:
S
SunAhong1993 已提交
1022
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1023
                "paddle.pow",
S
SunAhong1993 已提交
1024
                inputs={"x": input.name},
S
SunAhong1993 已提交
1025 1026 1027 1028 1029 1030
                outputs=[node.layer_name],
                exponent=2.0)
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
1031
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1032 1033 1034 1035 1036
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = MEAN
S
SunAhong1993 已提交
1037
        else:
S
SunAhong1993 已提交
1038
            layer_attrs = {
S
SunAhong1993 已提交
1039 1040
                "axis": dim[axis:],
                "keepdim": False,
S
SunAhong1993 已提交
1041
            }
S
SunAhong1993 已提交
1042
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1043
                "paddle.mean",
S
SunAhong1993 已提交
1044
                inputs={"x": input.name},
S
SunAhong1993 已提交
1045 1046
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
1047
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1048 1049 1050 1051
            "paddle.scale",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            scale=coeff)
S
SunAhong1993 已提交
1052

S
SunAhong1993 已提交
1053
    def DetectionOutput(self, node):
S
SunAhong1993 已提交
1054 1055
        detection_output_name = name_generator("detection_output",
                                               self.nn_name2id)
S
SunAhong1993 已提交
1056 1057
        output_name = node.layer_name
        layer_outputs = [detection_output_name, output_name]
S
SunAhong1993 已提交
1058
        assert len(
S
SunAhong1993 已提交
1059 1060
            node.
            inputs) == 3, "The count of DetectionOutput node\'s input is not 3."
S
SunAhong1993 已提交
1061
        inputs_dict = dict()
S
SunAhong1993 已提交
1062
        for i in range(len(node.inputs)):
S
SunAhong1993 已提交
1063
            input = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1064
            if i == 1:
S
SunAhong1993 已提交
1065
                input = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1066 1067 1068
                while input is not None \
                      and input.layer_type != 'Softmax' \
                      and input.layer_type != 'Sigmoid':
S
SunAhong1993 已提交
1069
                    input = self.graph.get_input_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
1070
                assert input is not None, 'This kind of DetectionOutput is not supported!'
S
SunAhong1993 已提交
1071 1072
                input = self.graph.get_input_node(input, idx=0, copy=True)
            inputs_dict["x{}".format(i)] = input.name
S
SunAhong1993 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        params = node.layer.detection_output_param
        nms_param = params.nms_param
        nms_param_dict = dict()
        nms_param_dict["nms_threshold"] = nms_param.nms_threshold
        nms_param_dict["top_k"] = nms_param.top_k
        nms_param_dict["eta"] = nms_param.eta
        if nms_param is None:
            nms_param_dict = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        fields = ["eta", "top_k", "nms_threshold"]
        for f in default.keys():
            if f not in nms_param_dict:
                nms_param_dict[f] = default[f]
        layer_attrs = {
            "background_label": params.background_label_id,
            "nms_threshold": nms_param_dict["nms_threshold"],
            "nms_top_k": nms_param_dict["top_k"],
            "keep_top_k": params.keep_top_k,
            "score_threshold": params.confidence_threshold,
S
SunAhong1993 已提交
1092 1093
            "nms_eta": nms_param_dict["eta"]
        }
S
SunAhong1993 已提交
1094 1095
        self.paddle_graph.add_layer(
            kernel="custom_layer:DetectionOutput",
S
SunAhong1993 已提交
1096
            inputs=inputs_dict,
S
SunAhong1993 已提交
1097
            outputs=layer_outputs,
S
SunAhong1993 已提交
1098
            **layer_attrs)
S
SunAhong1993 已提交
1099

S
SunAhong1993 已提交
1100
    def Normalize(self, node):
S
SunAhong1993 已提交
1101 1102 1103
        normalize_name = name_generator("normalize", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [normalize_name, output_name]
S
SunAhong1993 已提交
1104 1105
        assert len(
            node.inputs) == 1, "The count of Normalize node\'s input is not 1."
S
SunAhong1993 已提交
1106
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1107
        params = node.layer.norm_param
S
SunAhong1993 已提交
1108
        param_name = node.layer_name + "_scale"
S
SunAhong1993 已提交
1109 1110 1111 1112
        if node.data is None or len(node.data) != 1:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
1113 1114
            self.params[param_name] = \
                np.zeros([1] if params.channel_shared else [node.in_shapes[0][1]]).astype("float32")
S
SunAhong1993 已提交
1115
        else:
S
SunAhong1993 已提交
1116
            self.params[param_name] = _adjust_parameters(node)[0]
S
SunAhong1993 已提交
1117

S
SunAhong1993 已提交
1118 1119 1120 1121 1122 1123 1124
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[param_name],
            shape=self.params[param_name].shape,
            attr=string(param_name))
        inputs_dict = {}
S
SunAhong1993 已提交
1125
        layer_attrs = {"axis": -1 if params.channel_shared else 1}
S
SunAhong1993 已提交
1126
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1127
            "custom_layer:Normalize",
S
SunAhong1993 已提交
1128 1129
            inputs={"x": input.name,
                    "param": param_name},
S
SunAhong1993 已提交
1130 1131
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
1132

S
SunAhong1993 已提交
1133 1134 1135
    def Permute(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
S
SunAhong1993 已提交
1136
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1137
        params = node.layer.permute_param
S
SunAhong1993 已提交
1138
        order = list(params.order)
S
SunAhong1993 已提交
1139
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1140
            "paddle.transpose",
S
SunAhong1993 已提交
1141
            inputs={"x": input.name},
S
SunAhong1993 已提交
1142 1143
            outputs=[node.layer_name],
            perm=order)
S
SunAhong1993 已提交
1144

S
SunAhong1993 已提交
1145
    def PriorBox(self, node):
S
SunAhong1993 已提交
1146 1147 1148
        priorbox_name = name_generator("priorbox", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [priorbox_name, output_name]
S
SunAhong1993 已提交
1149 1150
        assert len(
            node.inputs) == 2, "The count of PriorBox node\'s input is not 2."
S
SunAhong1993 已提交
1151 1152
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1153
        inputs_dict = {}
S
SunAhong1993 已提交
1154 1155
        inputs_dict["x0"] = input0.name
        inputs_dict["x1"] = input1.name
S
SunAhong1993 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        params = node.layer.prior_box_param
        steps = tuple(params.step) if type(params.step) \
                is list or type(params.step) is tuple \
                else (params.step, params.step)
        layer_attrs = {
            "min_sizes": params.min_size,
            "max_sizes": params.max_size,
            "aspect_ratios": params.aspect_ratio,
            "variance": params.variance,
            "flip": params.flip,
            "clip": params.clip,
            "steps": steps,
            "offset": params.offset,
S
SunAhong1993 已提交
1169 1170
            "min_max_aspect_ratios_order": True
        }
S
SunAhong1993 已提交
1171 1172
        self.paddle_graph.add_layer(
            "custom_layer:PriorBox",
S
SunAhong1993 已提交
1173
            inputs=inputs_dict,
S
SunAhong1993 已提交
1174
            outputs=layer_outputs,
S
SunAhong1993 已提交
1175
            **layer_attrs)
S
SunAhong1993 已提交
1176

S
SunAhong1993 已提交
1177
    def ReLU6(self, node):
S
SunAhong1993 已提交
1178
        relu6_name = name_generator("relu6", self.nn_name2id)
S
SunAhong1993 已提交
1179 1180 1181 1182
        output_name = node.layer_name
        layer_outputs = [relu6_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU6 node\'s input is not 1."
S
SunAhong1993 已提交
1183
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1184
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1185
            "paddle.nn.ReLU6",
S
SunAhong1993 已提交
1186
            inputs={"input": input.name},
S
SunAhong1993 已提交
1187
            outputs=layer_outputs)
S
SunAhong1993 已提交
1188

S
SunAhong1993 已提交
1189
    def ROIPooling(self, node):
S
SunAhong1993 已提交
1190 1191 1192
        roipooling_name = name_generator("roipooling", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [roipooling_name, output_name]
S
SunAhong1993 已提交
1193 1194
        assert len(
            node.inputs) == 2, "The count of ROIPooling node\'s input is not 2."
S
SunAhong1993 已提交
1195 1196
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1197
        inputs_dict = {}
S
SunAhong1993 已提交
1198 1199
        inputs_dict["x0"] = input0.name
        inputs_dict["x1"] = input1.name
S
SunAhong1993 已提交
1200 1201 1202 1203
        params = node.layer.roi_pooling_param
        layer_attrs = {
            "pooled_height": params.pooled_h,
            "pooled_width": params.pooled_w,
S
SunAhong1993 已提交
1204 1205
            "spatial_scale": params.spatial_scale
        }
S
SunAhong1993 已提交
1206
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1207
            "custom_layer:ROIPooling",
S
SunAhong1993 已提交
1208
            inputs=inputs_dict,
S
SunAhong1993 已提交
1209
            outputs=layer_outputs,
S
SunAhong1993 已提交
1210
            **layer_attrs)
S
SunAhong1993 已提交
1211

S
SunAhong1993 已提交
1212
    def ShuffleChannel(self, node):
S
SunAhong1993 已提交
1213 1214
        assert len(node.inputs
                   ) == 1, "The count of ShuffleChannel node\'s input is not 1."
S
SunAhong1993 已提交
1215
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1216
        params = node.layer.shuffle_channel_param
S
SunAhong1993 已提交
1217
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
1218
            "paddle.nn.functional.channel_shuffle",
S
SunAhong1993 已提交
1219
            inputs={"x": input.name},
S
SunAhong1993 已提交
1220
            outputs=[node.layer_name],
W
wjj19950828 已提交
1221
            groups=params.group)
S
SunAhong1993 已提交
1222

S
SunAhong1993 已提交
1223 1224 1225
    def Upsample(self, node):
        assert len(
            node.inputs) == 1, "The count of Upsample node\'s input is not 1."
S
SunAhong1993 已提交
1226
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1227 1228 1229 1230
        params = node.layer.upsample_param
        layer_attrs = {
            "align_corners": False,
            "scale_factor": params.scale,
S
SunAhong1993 已提交
1231 1232
            "mode": "nearest"
        }
S
SunAhong1993 已提交
1233
        self.paddle_graph.add_layer(
1234 1235
            "paddle.nn.functional.interpolate",
            inputs={"x": input.name},
S
SunAhong1993 已提交
1236 1237
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
1238

S
SunAhong1993 已提交
1239
    def Select(self, node):
S
SunAhong1993 已提交
1240 1241 1242
        select_name = name_generator("select", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [select_name, output_name]
S
SunAhong1993 已提交
1243 1244
        assert len(
            node.inputs) == 1, "The count of Select node\'s input is not 1."
S
SunAhong1993 已提交
1245 1246
        input = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
1247 1248 1249 1250
        params = node.layer.select_param
        layer_attrs = {
            "input_shape": input_shape,
            "point": params.slice_point,
S
SunAhong1993 已提交
1251 1252
            "axis": params.axis
        }
S
SunAhong1993 已提交
1253 1254
        self.paddle_graph.add_layer(
            "custom_layer:Select",
S
SunAhong1993 已提交
1255
            inputs={"x": input.name},
S
SunAhong1993 已提交
1256
            outputs=layer_outputs,
S
SunAhong1993 已提交
1257
            **layer_attrs)