caffe_op_mapper.py 48.7 KB
Newer Older
S
SunAhong1993 已提交
1
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
S
SunAhong1993 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

S
SunAhong1993 已提交
15
import sys
S
SunAhong1993 已提交
16 17 18
import numbers
import numpy as np
from x2paddle.core.util import *
S
SunAhong1993 已提交
19
from x2paddle.core.program import PaddleGraph
S
SunAhong1993 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
from x2paddle.decoder.caffe_decoder import CaffeGraphNode


def _adjust_parameters(node):
    data = node.data
    # When using the protobuf-backend, each parameter initially has four dimensions.
    # In certain cases (like FC layers), we want to eliminate the singleton dimensions.
    # This implementation takes care of the common cases. However, it does leave the
    # potential for future issues.
    # The Caffe-backend does not suffer from this problem.
    data = list(data)

    squeeze_indices = [1]  # Squeeze biases.
    if node.layer_type == 'InnerProduct':
        squeeze_indices.append(0)  # Squeeze FC.

    for idx in squeeze_indices:
        if idx >= len(data):
            continue

        d = data[idx]
        assert len(
            d.shape
        ) == 4, 'invalid shape[%s] from caffe when adjust_parameters' % (
            str(d.shape))

        shape_old = d.shape
        sq_axis = None
        if idx == 0:
            sq_axis = (0, 1)
        elif idx == 1:
            sq_axis = (0, 1, 2)
        else:
            continue

        data[idx] = np.squeeze(d, axis=sq_axis)
        shape_new = data[idx].shape
    return data

S
SunAhong1993 已提交
59

S
SunAhong1993 已提交
60
def _get_kernel_parameters(kind, params):
S
SunAhong1993 已提交
61 62 63
    assert kind in [
        "Convolution", "Pooling", "Deconvolution", "ConvolutionDepthwise"
    ]
S
SunAhong1993 已提交
64
    [k_h, k_w] = [1, 1]
65 66 67 68
    if params.kernel_h > 0 or params.kernel_w > 0:
        k_h = params.kernel_h
        k_w = params.kernel_w
    elif isinstance(params.kernel_size, numbers.Number):
S
SunAhong1993 已提交
69 70
        [k_h, k_w] = [params.kernel_size] * 2
    elif len(params.kernel_size) > 0:
S
SunAhong1993 已提交
71
        k_h = params.kernel_h if params.kernel_h > 0 else params.kernel_size[0]
S
SunAhong1993 已提交
72 73 74
        k_w = params.kernel_w if params.kernel_w > 0 else params.kernel_size[
            len(params.kernel_size) - 1]
    [s_h, s_w] = [1, 1]
75 76 77 78
    if params.stride_h > 0 or params.stride_w > 0:
        s_h = params.stride_h
        s_w = params.stride_w
    elif isinstance(params.stride, numbers.Number):
S
SunAhong1993 已提交
79 80 81 82 83 84 85 86 87 88
        [s_h, s_w] = [params.stride] * 2
    elif len(params.stride) > 0:
        s_h = params.stride_h if params.stride_h > 0 else params.stride[0]
        s_w = params.stride_w if params.stride_w > 0 else params.stride[len(
            params.stride) - 1]
    [p_h, p_w] = [0, 0]
    if isinstance(params.pad, numbers.Number):
        [p_h, p_w] = [params.pad] * 2
    elif len(params.pad) > 0:
        p_h = params.pad_h if params.pad_h > 0 else params.pad[0]
S
SunAhong1993 已提交
89 90
        p_w = params.pad_w if params.pad_w > 0 else params.pad[len(params.pad) -
                                                               1]
S
SunAhong1993 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    elif params.pad_h > 0 or params.pad_w > 0:
        p_h = params.pad_h
        p_w = params.pad_w
    dila_h = dila_w = 1
    group = 1
    c_o = 1
    if kind in ["Convolution", "Deconvolution", "ConvolutionDepthwise"]:
        if kind in ["Convolution", "Deconvolution"]:
            c_o = params.num_output
        dila_len = len(params.dilation)
        if dila_len == 2:
            dila_h = params.dilation[0]
            dila_w = params.dilation[1]
        elif dila_len == 1:
            dila_h = dila_w = params.dilation[0]
        else:
            assert dila_len == 0, "invalid length[%s] of dilation in convolution" % (
                dila_len)
    if kind in ['Convolution', 'Deconvolution']:
        group = params.group
    kernel = [k_h, k_w]
    stride = [s_h, s_w]
    pad = [p_h, p_w]
    dilation = [dila_h, dila_w]
    return c_o, kernel, stride, pad, dilation, group
S
SunAhong1993 已提交
116 117


S
SunAhong1993 已提交
118
class CaffeOpMapper():
S
SunAhong1993 已提交
119
    directly_map_ops = {
S
SunAhong1993 已提交
120 121
        'Sigmoid': ['paddle.nn.layer.Sigmoid'],
        'TanH': ['paddle.nn.Tanh'],
S
SunAhong1993 已提交
122 123 124 125
    }

    def __init__(self, decoder):
        self.graph = decoder.caffe_graph
S
SunAhong1993 已提交
126 127
        if not self.op_checker():
            raise Exception("Model is not supported yet.")
S
SunAhong1993 已提交
128
        self.params = dict()
S
SunAhong1993 已提交
129
        self.paddle_graph = PaddleGraph(parent_layer=None, source_type="caffe")
S
SunAhong1993 已提交
130
        self.paddle_graph.outputs = self.graph.output_nodes
S
SunAhong1993 已提交
131 132
        self.inputs_info = {}
        self.nn_name2id = {}
S
SunAhong1993 已提交
133 134 135 136 137 138 139 140
        print("Total nodes: {}".format(
            sum([
                isinstance(node, CaffeGraphNode)
                for name, node in self.graph.node_map.items()
            ])))
        print("Nodes converting ...")
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...     ".format(i + 1))
S
SunAhong1993 已提交
141 142 143 144 145 146 147
            node = self.graph.get_node(node_name)
            op = node.layer_type
            if hasattr(self, op):
                func = getattr(self, op)
                func(node)
            elif op in self.directly_map_ops:
                self.directly_map(node)
S
SunAhong1993 已提交
148
        print("\nNodes converted.")
S
SunAhong1993 已提交
149 150 151
        self.paddle_graph.set_name(self.graph.graph_name)
        self.paddle_graph.set_parameters(self.params)
        self.paddle_graph.set_inputs_info(self.inputs_info)
S
SunAhong1993 已提交
152

S
SunAhong1993 已提交
153 154 155 156 157
    def op_checker(self):
        unsupported_ops = set()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            op = node.layer_type
S
SunAhong1993 已提交
158
            if not hasattr(self, op) and op not in self.directly_map_ops:
S
SunAhong1993 已提交
159 160 161 162
                unsupported_ops.add(op)
        if len(unsupported_ops) == 0:
            return True
        else:
S
SunAhong1993 已提交
163
            if len(unsupported_ops) > 0:
S
SunAhong1993 已提交
164 165
                print("\n========= {} OPs are not supported yet ===========".
                      format(len(unsupported_ops)))
S
SunAhong1993 已提交
166
            for op in unsupported_ops:
S
SunAhong1993 已提交
167
                print("========== {} ============".format(op))
S
SunAhong1993 已提交
168
            return False
S
SunAhong1993 已提交
169

S
SunAhong1993 已提交
170
    def directly_map(self, node):
171 172
        assert len(
            node.layer.bottom) == 1, 'directly_map error with multi inputs'
S
SunAhong1993 已提交
173 174 175
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_input_node(node, 0)
        paddle_op = op_info[0]
176 177
        if paddle_op.startswith("paddle.nn.layer"):
            op_name = paddle_op[16:].lower()
S
SunAhong1993 已提交
178 179 180 181 182 183 184
            op_name = name_generator(op_name, self.nn_name2id)
            output_name = node.name
            layer_outputs = [op_name, output_name]
            self.paddle_graph.add_layer(
                kernel=paddle_op,
                inputs={"x": input.name},
                outputs=layer_outputs)
S
SunAhong1993 已提交
185
        else:
186 187 188 189 190 191 192 193 194 195 196
            if paddle_op.startswith("paddle.nn") and "layer" not in paddle_op:
                op_name = paddle_op[10:].lower()
                op_name = name_generator(op_name, self.nn_name2id)
                output_name = node.name
                layer_outputs = [op_name, output_name]
                self.paddle_graph.add_layer(
                    kernel=paddle_op,
                    inputs={"x": input.name},
                    outputs=layer_outputs)
            else:
                self.paddle_graph.add_layer(
197 198
                    kernel=paddle_op,
                    inputs={"x": input.name},
199
                    outputs=[node.name])
S
SunAhong1993 已提交
200 201

    def Input(self, node):
S
SunAhong1993 已提交
202
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
203 204 205
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
S
SunAhong1993 已提交
206
            data=node.name)
S
SunAhong1993 已提交
207
        shape = list(node.layer.input_param.shape[0].dim)[1:]
208
        self.inputs_info[node.name] = [[-1] + shape, "float32"]
S
SunAhong1993 已提交
209

S
SunAhong1993 已提交
210 211 212 213 214 215 216
    def MemoryData(self, node):
        params = node.layer.memory_data_param
        transform_params = node.layer.transform_param
        self.paddle_graph.add_layer(
            "paddle.to_tensor",
            inputs={},
            outputs=[node.layer_name],
S
SunAhong1993 已提交
217
            data=node.layer_name)
S
SunAhong1993 已提交
218 219 220 221 222 223 224 225 226
        shape = list()
        shape.append(params.batch_size)
        shape.append(params.channels)
        if hasattr(transform_params, "crop_size"):
            shape.append(transform_params.crop_size)
            shape.append(transform_params.crop_size)
        else:
            shape.append(params.width)
            shape.append(params.height)
S
SunAhong1993 已提交
227
        self.inputs_info[node.layer_name] = [shape, "float32"]
S
SunAhong1993 已提交
228 229

    def Convolution(self, node):
S
SunAhong1993 已提交
230
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
231 232 233 234
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
235
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
236 237 238 239 240 241 242
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
243 244 245
                np.zeros([
                    out_channel, node.in_shapes[0][1], kernel[0], kernel[1]
                ]).astype('float32'))
S
SunAhong1993 已提交
246 247
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
248
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
249 250 251 252 253
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Convolution node\'s input is not 1."
S
SunAhong1993 已提交
254
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
255
        layer_attrs = {
S
SunAhong1993 已提交
256
            "in_channels": node.in_shapes[0][1],
S
SunAhong1993 已提交
257 258 259 260 261 262 263 264 265
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
266
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
267
            "paddle.nn.Conv2D",
S
SunAhong1993 已提交
268
            inputs={"input": input.name},
S
SunAhong1993 已提交
269 270
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
271

S
SunAhong1993 已提交
272 273 274
    def DepthwiseConvolution(self, node):
        node.layer_type = "ConvolutionDepthwise"
        self.ConvolutionDepthwise(node)
S
SunAhong1993 已提交
275 276

    def Deconvolution(self, node):
S
SunAhong1993 已提交
277
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
278 279 280 281
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
282
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
283 284 285 286 287 288 289
            node.layer_type, params)
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
290 291 292
                np.zeros([
                    out_channel, node.in_shapes[0][1], kernel[0], kernel[1]
                ]).astype('float32'))
S
SunAhong1993 已提交
293 294
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
295
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
296 297 298 299 300
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
S
SunAhong1993 已提交
301
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
302
        layer_attrs = {
S
SunAhong1993 已提交
303
            "in_channels": node.in_shapes[0][1],
S
SunAhong1993 已提交
304 305 306 307 308 309 310 311 312
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
313
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
314
            "paddle.nn.Conv2DTranspose",
S
SunAhong1993 已提交
315
            inputs={"input": input.name},
S
SunAhong1993 已提交
316 317
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
318

S
SunAhong1993 已提交
319
    def ConvolutionDepthwise(self, node):
S
SunAhong1993 已提交
320
        conv2d_name = name_generator("conv", self.nn_name2id)
S
SunAhong1993 已提交
321 322 323 324
        output_name = node.layer_name
        layer_outputs = [conv2d_name, output_name]
        data = node.data
        params = node.layer.convolution_param
S
SunAhong1993 已提交
325
        out_channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
326
            node.layer_type, params)
S
SunAhong1993 已提交
327 328
        out_channel = params.num_output if params.num_output is not None else node.in_shapes[
            0][1]
S
SunAhong1993 已提交
329
        in_channel = node.in_shapes[0][1]
S
SunAhong1993 已提交
330 331 332
        group = int(in_channel / (
            in_channel / out_channel)) if in_channel > out_channel else int(
                in_channel / (out_channel / in_channel))
S
SunAhong1993 已提交
333 334 335 336 337 338
        if data is None:
            data = []
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
            data.append(
S
SunAhong1993 已提交
339 340 341
                np.zeros([
                    out_channel, node.in_shapes[0][1], kernel[0], kernel[1]
                ]).astype('float32'))
S
SunAhong1993 已提交
342 343
            data.append(np.zeros([out_channel, ]).astype('float32'))
        else:
S
SunAhong1993 已提交
344
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
345 346 347 348 349
        self.params[conv2d_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[conv2d_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of Deconvolution node\'s input is not 1."
S
SunAhong1993 已提交
350
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
351 352 353 354 355 356 357 358 359 360 361
        layer_attrs = {
            "in_channels": in_channel,
            "out_channels": out_channel,
            "kernel_size": kernel,
            "stride": stride,
            "padding": pad,
            "dilation": dilation,
            "groups": group
        }
        if len(data) == 1:
            layer_attrs["bias_attr"] = False
S
SunAhong1993 已提交
362
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
363
            "paddle.nn.Conv2D",
S
SunAhong1993 已提交
364
            inputs={"input": input.name},
S
SunAhong1993 已提交
365 366 367 368
            outputs=layer_outputs,
            **layer_attrs)

    def Pooling(self, node):
S
SunAhong1993 已提交
369
        pool2d_name = name_generator("pool", self.nn_name2id)
S
SunAhong1993 已提交
370 371 372
        output_name = node.layer_name
        layer_outputs = [pool2d_name, output_name]
        params = node.layer.pooling_param
S
SunAhong1993 已提交
373 374 375
        ceil_mode = getattr(params, "ceil_mode", True)
        if not hasattr(params, 'ceil_mode'):
            ceil_mode = True if getattr(params, "round_mode", 0) == 0 else False
S
SunAhong1993 已提交
376 377
        global_pool = getattr(params, "global_pooling", False)
        kernel_default = [1, 1]
S
SunAhong1993 已提交
378
        channel, kernel, stride, pad, dilation, group = _get_kernel_parameters(
S
SunAhong1993 已提交
379 380 381 382 383 384 385
            node.layer_type, params)
        if params.pool == 0:
            pool_type = "max"
        else:
            pool_type = "avg"
        assert len(
            node.inputs) == 1, "The count of Pooling node\'s input is not 1."
S
SunAhong1993 已提交
386
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
387 388 389 390
        if global_pool:
            if kernel[0] == 0:
                kernel = [1, 1]
            if params.pool == 0:
S
SunAhong1993 已提交
391
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
392
                    "paddle.nn.AdaptiveMaxPool2D",
S
SunAhong1993 已提交
393
                    inputs={"input": input.name},
S
SunAhong1993 已提交
394 395 396
                    outputs=layer_outputs,
                    output_size=kernel)
            else:
S
SunAhong1993 已提交
397
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
398
                    "paddle.nn.AdaptiveAvgPool2D",
S
SunAhong1993 已提交
399
                    inputs={"input": input.name},
S
SunAhong1993 已提交
400 401
                    outputs=layer_outputs,
                    output_size=kernel)
S
SunAhong1993 已提交
402
        else:
S
SunAhong1993 已提交
403
            layer_attrs = {
S
SunAhong1993 已提交
404 405 406
                'kernel_size': kernel,
                'stride': stride,
                'padding': pad,
S
SunAhong1993 已提交
407 408
                'ceil_mode': ceil_mode,
            }
S
SunAhong1993 已提交
409 410 411 412 413 414 415 416 417 418 419 420
            if params.pool == 0:
                self.paddle_graph.add_layer(
                    "paddle.nn.MaxPool2D",
                    inputs={"input": input.name},
                    outputs=layer_outputs,
                    **layer_attrs)
            else:
                self.paddle_graph.add_layer(
                    "paddle.nn.AvgPool2D",
                    inputs={"input": input.name},
                    outputs=layer_outputs,
                    **layer_attrs)
S
SunAhong1993 已提交
421 422

    def LRN(self, node):
S
SunAhong1993 已提交
423 424 425
        lrn_name = name_generator("lrn", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [lrn_name, output_name]
S
SunAhong1993 已提交
426
        assert len(node.inputs) == 1, "The count of LRN node\'s input is not 1."
S
SunAhong1993 已提交
427
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
428 429 430 431
        params = node.layer.lrn_param
        assert params.local_size % 2 == 1
        alpha = params.alpha / float(params.local_size)
        layer_attrs = {
W
wjj19950828 已提交
432
            "size": params.local_size,
S
SunAhong1993 已提交
433
            "alpha": alpha,
S
fix  
SunAhong1993 已提交
434
            "beta": params.beta,
W
wjj19950828 已提交
435
            "k": params.k,
S
SunAhong1993 已提交
436
        }
S
SunAhong1993 已提交
437
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
438
            "paddle.nn.LocalResponseNorm",
S
SunAhong1993 已提交
439
            inputs={"input": input.name},
S
fix  
SunAhong1993 已提交
440
            outputs=[node.layer_name],
S
SunAhong1993 已提交
441 442 443
            **layer_attrs)

    def InnerProduct(self, node):
S
SunAhong1993 已提交
444
        linear_name = name_generator("linear", self.nn_name2id)
S
SunAhong1993 已提交
445 446 447
        output_name = node.layer_name
        layer_outputs = [linear_name, output_name]
        data = node.data
S
SunAhong1993 已提交
448
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
449 450 451 452 453 454 455
        params = node.layer.inner_product_param
        if data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0."
                .format(node.layer_name, node.layer_type))
            data = []
            data.append(
S
SunAhong1993 已提交
456 457
                np.zeros([node.in_shapes[0][1], params.num_output]).astype(
                    "float32").astype("float32"))
S
SunAhong1993 已提交
458
            data.append(
S
SunAhong1993 已提交
459 460
                np.zeros([params.num_output]).astype("float32").astype(
                    "float32"))
S
SunAhong1993 已提交
461
        else:
S
SunAhong1993 已提交
462
            data = _adjust_parameters(node)
S
SunAhong1993 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            # Reshape the parameters to Paddle's ordering
            transpose_order = (1, 0)
            w = data[0]
            fc_shape = w.shape
            output_channels = fc_shape[0]
            w = w.reshape((output_channels, -1))
            w = w.transpose(transpose_order)
            data[0] = w

        self.params[linear_name + ".weight"] = data[0]
        if len(data) == 2:
            self.params[linear_name + ".bias"] = data[1]
        assert len(node.inputs
                   ) == 1, "The count of InnerProduct node\'s input is not 1."
        assert params.axis == 1
        assert params.bias_term == True
        layer_attrs = {
            "in_features": data[0].shape[0],
S
SunAhong1993 已提交
481
            "out_features": params.num_output
S
SunAhong1993 已提交
482 483 484
        }
        if len(data) == 1:
            layer_attrs["bias"] = False
S
SunAhong1993 已提交
485
        if node.in_shapes[0][-1] != data[0].shape[0]:
S
SunAhong1993 已提交
486
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
487
                "paddle.reshape",
S
SunAhong1993 已提交
488
                inputs={"x": input.name},
S
SunAhong1993 已提交
489 490
                outputs=[output_name],
                shape=[-1, data[0].shape[0]])
S
SunAhong1993 已提交
491
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
492 493 494 495 496
                "paddle.nn.Linear",
                inputs={"input": output_name},
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
497
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
498
                "paddle.nn.Linear",
S
SunAhong1993 已提交
499
                inputs={"input": input.name},
S
SunAhong1993 已提交
500 501
                outputs=layer_outputs,
                **layer_attrs)
S
SunAhong1993 已提交
502

S
SunAhong1993 已提交
503 504 505 506
    def AbsVal(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of AbsVal node\'s input is not more than 1."
S
SunAhong1993 已提交
507
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
508
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
509
            "paddle.abs",
S
SunAhong1993 已提交
510
            inputs={"input": input.name},
S
SunAhong1993 已提交
511 512 513
            outputs=[node.layer_name])

    def Softmax(self, node):
S
SunAhong1993 已提交
514
        softmax_name = name_generator("softmax", self.nn_name2id)
S
SunAhong1993 已提交
515 516 517 518
        output_name = node.layer_name
        layer_outputs = [softmax_name, output_name]
        assert len(
            node.inputs) == 1, "The count of Softmax node\'s input is not 1."
S
SunAhong1993 已提交
519
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
520 521
        params = node.layer.softmax_param
        axis = params.axis
S
SunAhong1993 已提交
522
        shape = node.in_shapes[0]
S
SunAhong1993 已提交
523 524 525
        dims = len(shape)
        axis = axis + dims if axis < 0 else axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
526
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
527
            "paddle.nn.Softmax",
S
SunAhong1993 已提交
528
            inputs={"input": input.name},
S
SunAhong1993 已提交
529 530 531 532 533 534
            outputs=layer_outputs,
            **layer_attrs)

    def Slice(self, node):
        assert len(
            node.inputs) == 1, "The count of Slice node\'s input is not 1."
S
SunAhong1993 已提交
535
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
536 537 538 539 540 541
        top_len = len(node.layer.top)
        params = node.layer.slice_param
        axis = params.axis
        slice_dim = params.slice_dim
        if slice_dim != 1 and axis == 1:
            axis = slice_dim
S
SunAhong1993 已提交
542
        output_shape = node.out_shapes
S
SunAhong1993 已提交
543 544 545
        sections_list = list()
        outputs_list = list()
        for i, s in enumerate(output_shape):
S
SunAhong1993 已提交
546
            sections_list.append(s[axis])
S
SunAhong1993 已提交
547
            outputs_list.append("{}_p{}".format(node.layer_name, i))
S
SunAhong1993 已提交
548 549
        layer_attrs = {
            'num_or_sections': sections_list,
S
SunAhong1993 已提交
550
            'axis': axis,
S
SunAhong1993 已提交
551
        }
S
SunAhong1993 已提交
552
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
553
            "paddle.split",
S
SunAhong1993 已提交
554
            inputs={"x": input.name},
S
SunAhong1993 已提交
555
            outputs=outputs_list,
S
SunAhong1993 已提交
556 557 558 559 560 561
            **layer_attrs)

    def Concat(self, node):
        assert len(
            node.inputs
        ) >= 1, "The count of Concat node\'s input is not more than 1."
S
SunAhong1993 已提交
562
        inputs_list = list()
S
SunAhong1993 已提交
563
        for i in range(len(node.inputs)):
S
SunAhong1993 已提交
564 565
            input = self.graph.get_input_node(node, idx=i, copy=True)
            inputs_list.append(input.name)
S
SunAhong1993 已提交
566 567 568
        params = node.layer.concat_param
        axis = params.axis
        layer_attrs = {'axis': axis}
S
SunAhong1993 已提交
569
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
570
            "paddle.concat",
S
SunAhong1993 已提交
571
            inputs={"x": inputs_list},
S
SunAhong1993 已提交
572 573 574 575
            outputs=[node.layer_name],
            **layer_attrs)

    def ReLU(self, node):
S
SunAhong1993 已提交
576
        relu_name = name_generator("relu", self.nn_name2id)
S
SunAhong1993 已提交
577 578 579 580
        output_name = node.layer_name
        layer_outputs = [relu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU node\'s input is not 1."
S
SunAhong1993 已提交
581
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
582 583 584 585
        params = node.layer.relu_param
        if params.HasField('negative_slope') and params.negative_slope != 0:
            negative_slope = float(params.negative_slope)

586
            layer_attrs = {'negative_slope': negative_slope}
S
SunAhong1993 已提交
587
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
588
                "paddle.nn.LeakyReLU",
S
SunAhong1993 已提交
589
                inputs={"input": input.name},
S
SunAhong1993 已提交
590 591 592
                outputs=layer_outputs,
                **layer_attrs)
        else:
S
SunAhong1993 已提交
593
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
594
                "paddle.nn.ReLU",
S
SunAhong1993 已提交
595
                inputs={"input": input.name},
S
SunAhong1993 已提交
596 597 598
                outputs=layer_outputs)

    def PReLU(self, node):
S
SunAhong1993 已提交
599
        prelu_name = name_generator("prelu", self.nn_name2id)
S
SunAhong1993 已提交
600 601 602 603
        output_name = node.layer_name
        layer_outputs = [prelu_name, output_name]
        assert len(
            node.inputs) == 1, "The count of PReLU node\'s input is not 1."
S
SunAhong1993 已提交
604
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
605 606
        params = node.layer.prelu_param
        mode_bool = params.channel_shared
S
SunAhong1993 已提交
607
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
608
        if mode_bool:
S
SunAhong1993 已提交
609
            num_parameters = 1
S
SunAhong1993 已提交
610
        else:
S
SunAhong1993 已提交
611
            num_parameters = output_shape[1]
S
SunAhong1993 已提交
612 613 614 615
        data = node.data
        self.params[prelu_name + '._weight'] = np.squeeze(data[0])
        assert data is not None, "The parameter of {} (type is {}) is not set. You need to use python package of caffe to set the default value.".format(
            node.layer_name, node.layer_type)
S
SunAhong1993 已提交
616
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
617
            "paddle.nn.PReLU",
S
SunAhong1993 已提交
618
            inputs={"input": input.name},
S
SunAhong1993 已提交
619
            outputs=layer_outputs,
S
SunAhong1993 已提交
620
            num_parameters=num_parameters)
S
SunAhong1993 已提交
621 622

    def Eltwise(self, node):
623 624
        if len(node.layer.
               bottom) == 3 and node.layer.eltwise_param.operation == 1:
625 626 627 628 629 630 631 632 633 634
            inputs_dict = {}
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input1 = self.graph.get_input_node(node, idx=1, copy=True)
            input2 = self.graph.get_input_node(node, idx=2, copy=True)
            input0_name = input0.name
            input1_name = input1.name
            input2_name = input2.name
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
            self.paddle_graph.add_layer(
635 636 637
                "paddle.add",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_1"])
638
            inputs_dict = {}
639
            inputs_dict['x'] = node.layer_name + "_1"
640 641
            inputs_dict['y'] = input2_name
            self.paddle_graph.add_layer(
642
                "paddle.add", inputs=inputs_dict, outputs=[node.layer_name])
643 644
            return

645 646
        assert len(node.layer.
                   bottom) == 2, "The count of Eltwise node\'s input is not 2."
S
SunAhong1993 已提交
647 648 649
        params = node.layer.eltwise_param
        mode = params.operation
        inputs = []
S
SunAhong1993 已提交
650 651 652 653
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
        input0_name = input0.name
        input1_name = input1.name
S
SunAhong1993 已提交
654 655 656 657
        if mode == 0:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
658
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
659 660 661 662 663 664
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name])
        elif mode == 1:
            if hasattr(params, 'coeff') and len(params.coeff) == 2:
                coeff = params.coeff
S
SunAhong1993 已提交
665
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
666
                    "paddle.scale",
S
SunAhong1993 已提交
667 668
                    inputs={"x": input0_name},
                    outputs=[node.layer_name + '_mul0'],
S
SunAhong1993 已提交
669
                    scale=coeff[0])
S
SunAhong1993 已提交
670
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
671
                    "paddle.scale",
S
SunAhong1993 已提交
672 673
                    inputs={"x": input1_name},
                    outputs=[node.layer_name + '_mul1'],
S
SunAhong1993 已提交
674
                    scale=coeff[1])
S
SunAhong1993 已提交
675 676 677
                inputs_dict = {}
                inputs_dict['x'] = node.layer_name + '_mul0'
                inputs_dict['y'] = node.layer_name + '_mul1'
S
SunAhong1993 已提交
678
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
679
                    "paddle.add", inputs=inputs_dict,
S
SunAhong1993 已提交
680 681 682 683 684
                    outputs=[node.layer_name])
            else:
                inputs_dict = {}
                inputs_dict['x'] = input0_name
                inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
685
                self.paddle_graph.add_layer(
S
SunAhong1993 已提交
686
                    "paddle.add", inputs=inputs_dict,
S
SunAhong1993 已提交
687 688 689 690 691
                    outputs=[node.layer_name])
        else:
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
S
SunAhong1993 已提交
692
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
693
                "paddle.max", inputs=inputs_dict, outputs=[node.layer_name])
S
SunAhong1993 已提交
694 695

    def BatchNorm(self, node):
S
SunAhong1993 已提交
696
        batchnorm_name = name_generator("batchnorm", self.nn_name2id)
S
SunAhong1993 已提交
697 698 699 700
        output_name = node.layer_name
        layer_outputs = [batchnorm_name, output_name]
        assert len(
            node.inputs) == 1, "The count of BatchNorm node\'s input is not 1."
S
SunAhong1993 已提交
701
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
702 703 704 705 706 707 708 709 710
        params = node.layer.batch_norm_param
        if hasattr(params, "eps"):
            eps = params.eps
        else:
            eps = 1e-5
        if node.data is None or len(node.data) != 3:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
711 712
            mean = np.zeros([node.in_shapes[0][1], ]).astype("float32")
            variance = np.zeros([node.in_shapes[0][1], ]).astype("float32")
S
SunAhong1993 已提交
713 714 715 716 717 718 719 720 721 722 723 724
            scale = 0
        else:

            node.data = [np.squeeze(i).astype("float32") for i in node.data]
            mean, variance, scale = node.data
        # Prescale the stats
        scaling_factor = 1.0 / scale if scale != 0 else 0
        mean *= scaling_factor
        variance *= scaling_factor
        self.params[batchnorm_name + "._mean"] = mean
        self.params[batchnorm_name + '._variance'] = variance
        layer_attrs = {
S
SunAhong1993 已提交
725
            "num_features": node.in_shapes[0][1],
S
SunAhong1993 已提交
726 727 728 729
            "epsilon": eps,
            "weight_attr": False,
            "bias_attr": False,
        }
S
SunAhong1993 已提交
730 731 732 733 734
        if len(node.in_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                "paddle.unsqueeze",
                inputs={"x": input.name},
                outputs=[input.name],
S
SunAhong1993 已提交
735
                axis=[2, 3])
S
SunAhong1993 已提交
736
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
737
            "paddle.nn.BatchNorm2D",
S
SunAhong1993 已提交
738
            inputs={"input": input.name},
S
SunAhong1993 已提交
739 740
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
741 742 743 744 745
        if len(node.in_shapes[0]) == 2:
            self.paddle_graph.add_layer(
                "paddle.squeeze",
                inputs={"x": node.layer_name},
                outputs=[node.layer_name],
S
SunAhong1993 已提交
746 747
                axis=[2, 3])

S
SunAhong1993 已提交
748 749 750 751 752
    def Scale(self, node):
        if node.data is None:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
753
            self.params[node.layer_name + "_cparam1"] = np.zeros([
S
SunAhong1993 已提交
754
                node.in_shapes[0][1],
S
SunAhong1993 已提交
755
            ]).astype("float32")
S
SunAhong1993 已提交
756
            self.params[node.layer_name + "_cparam2"] = np.zeros([
S
SunAhong1993 已提交
757
                node.in_shapes[0][1],
S
SunAhong1993 已提交
758 759
            ]).astype("float32")
        else:
S
SunAhong1993 已提交
760
            self.params[node.layer_name + "_cparam1"] = np.squeeze(node.data[
S
SunAhong1993 已提交
761
                0]).astype("float32")
S
SunAhong1993 已提交
762 763 764 765 766
            if not node.layer.scale_param.bias_term:
                self.params[node.layer_name + "_cparam2"] = np.zeros([
                    node.in_shapes[0][1],
                ]).astype("float32")
            else:
S
SunAhong1993 已提交
767 768
                self.params[node.layer_name + "_cparam2"] = np.squeeze(
                    node.data[1]).astype("float32")
S
SunAhong1993 已提交
769 770
        params = node.layer.scale_param
        axis = params.axis
W
wjj19950828 已提交
771 772
        if axis < 0:
            axis += len(node.in_shapes[0])
S
SunAhong1993 已提交
773
        if len(node.inputs) == 2:
S
SunAhong1993 已提交
774 775 776 777
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input1 = self.graph.get_input_node(node, idx=1, copy=True)
            input0_name = input0.name
            input1_name = input1.name
S
SunAhong1993 已提交
778 779 780 781
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = input1_name
        else:
S
SunAhong1993 已提交
782 783
            self.paddle_graph.add_layer(
                "self.create_parameter",
S
SunAhong1993 已提交
784 785
                inputs={},
                outputs=[node.layer_name + "_cparam1"],
S
SunAhong1993 已提交
786 787
                shape=self.params[node.layer_name + "_cparam1"].shape,
                attr=string(node.layer_name + "_cparam1"))
S
SunAhong1993 已提交
788 789
            input0 = self.graph.get_input_node(node, idx=0, copy=True)
            input0_name = input0.name
S
SunAhong1993 已提交
790 791 792
            inputs_dict = {}
            inputs_dict['x'] = input0_name
            inputs_dict['y'] = node.layer_name + "_cparam1"
W
wjj19950828 已提交
793 794 795 796 797 798 799 800 801 802 803
        if axis == len(node.in_shapes[0]) - 1:
            self.paddle_graph.add_layer(
                "paddle.multiply",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"])
        else:
            self.paddle_graph.add_layer(
                "paddle.fluid.layers.elementwise_mul",
                inputs=inputs_dict,
                outputs=[node.layer_name + "_mul"],
                axis=axis)
S
SunAhong1993 已提交
804 805 806 807 808 809
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[node.layer_name + "_cparam2"],
            shape=self.params[node.layer_name + "_cparam2"].shape,
            attr=string(node.layer_name + "_cparam2"))
S
SunAhong1993 已提交
810 811 812
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = node.layer_name + "_cparam2"
S
SunAhong1993 已提交
813
        output_shape = node.out_shapes[0]
W
wjj19950828 已提交
814
        if axis == len(output_shape) - 1:
S
SunAhong1993 已提交
815
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
816
                "paddle.add", inputs=inputs_dict, outputs=[node.layer_name])
S
SunAhong1993 已提交
817 818 819 820
        else:
            param2_shape = self.params[node.layer_name + "_cparam2"].shape
            param2_shape_len = len(param2_shape)
            diff_len = len(output_shape) - axis - param2_shape_len
S
SunAhong1993 已提交
821
            new_shape = list(param2_shape) + [1] * diff_len
S
SunAhong1993 已提交
822 823 824 825 826 827
            self.paddle_graph.add_layer(
                "paddle.reshape",
                inputs={"x": node.layer_name + "_cparam2"},
                outputs=[node.layer_name + "_cparam2"],
                shape=new_shape)
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
828 829
                "paddle.add", inputs=inputs_dict, outputs=[node.layer_name])

S
SunAhong1993 已提交
830
    def Reshape(self, node):
S
SunAhong1993 已提交
831 832
        input = self.graph.get_input_node(node, idx=0, copy=True)
        output_shape = node.out_shapes[0]
S
SunAhong1993 已提交
833
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
834
            "paddle.reshape",
S
SunAhong1993 已提交
835
            inputs={"x": input.name},
S
SunAhong1993 已提交
836
            outputs=[node.layer_name],
S
SunAhong1993 已提交
837
            shape=output_shape)
S
SunAhong1993 已提交
838 839 840 841 842

    def ArgMax(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of ArgMax node\'s input and output is not 1."
S
SunAhong1993 已提交
843 844
        input = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
845 846 847 848
        params = node.layer.argmax_param
        out_max_val = params.out_max_val if hasattr(params,
                                                    out_max_val) else False
        top_k = params.top_k if hasattr(params, top_k) else 1
S
SunAhong1993 已提交
849
        axis = params.axis if hasattr(params, axis) else -1
S
SunAhong1993 已提交
850 851 852
        if axis < 0:
            axis += len(input_shape)
        if out_max_val is True:
S
SunAhong1993 已提交
853
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
854
                "paddle.topk",
S
SunAhong1993 已提交
855
                inputs={"x": input.name},
S
SunAhong1993 已提交
856 857 858 859
                outputs=[
                    node.layer_name + "_topk_var",
                    node.layer_name + "_index_var"
                ],
S
SunAhong1993 已提交
860
                k=top_k)
S
SunAhong1993 已提交
861
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
862 863 864 865
                "paddle.cast",
                inputs={"x": node.layer_name + "_index_var"},
                outputs=[node.layer_name + "_index_var"],
                dtype="{}_topk_var.dtype".format(node.layer_name))
S
SunAhong1993 已提交
866
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
867
                "paddle.concat",
S
SunAhong1993 已提交
868 869 870 871 872 873
                inputs={
                    "x": [
                        node.layer_name + "_topk_var",
                        node.layer_name + "_index_var"
                    ]
                },
S
SunAhong1993 已提交
874 875 876
                outputs=[node.layer_name],
                axis=axis)
        else:
S
SunAhong1993 已提交
877
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
878
                "paddle.topk",
S
SunAhong1993 已提交
879
                inputs={"x": input.name},
S
SunAhong1993 已提交
880 881
                outputs=["_", node.layer_name],
                k=top_k)
S
SunAhong1993 已提交
882

S
SunAhong1993 已提交
883 884 885 886
    def Axpy(self, node):
        assert len(node.inputs) == 1 and len(
            node.outputs
        ) == 1, "The count of Axpy node\'s input and output is not 1."
S
SunAhong1993 已提交
887
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
888
        params = node.layer.axpy_param
S
SunAhong1993 已提交
889 890 891 892 893 894
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
        input2 = self.graph.get_input_node(node, idx=2, copy=True)
        input0_name = input0.name
        input1_name = input1.name
        input2_name = input2.name
S
SunAhong1993 已提交
895 896 897
        inputs_dict = {}
        inputs_dict['x'] = input1_name
        inputs_dict['y'] = input0_name
S
SunAhong1993 已提交
898
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
899 900 901 902 903 904 905
            "paddle.multiply",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"],
            axis=0)
        inputs_dict = {}
        inputs_dict['x'] = node.layer_name + "_mul"
        inputs_dict['y'] = input2_name
S
SunAhong1993 已提交
906
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
907 908 909 910 911 912 913
            "paddle.add",
            inputs=inputs_dict,
            outputs=[node.layer_name + "_mul"])

    def Crop(self, node):
        assert len(
            node.inputs) == 2, "The count of Crop node\'s input is not 2."
S
SunAhong1993 已提交
914 915
        input = self.graph.get_input_node(node, idx=0, copy=True)
        example = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
916 917
        params = node.layer.crop_param
        axis = params.axis
S
SunAhong1993 已提交
918
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
919 920 921 922
        if axis < 0:
            axis += len(input_shape)
        offset_real = [0] * len(input_shape)
        if hasattr(params, "offset") and len(params.offset) > 0:
923
            offset_origin = list(params.offset)
924
            if len(offset_origin) == 1:
925
                offset = offset_origin * (len(input_shape) - axis)
S
SunAhong1993 已提交
926 927 928 929
            assert (len(input_shape) - axis
                    ) == len(offset), "invalid offset[%s] in crop layer" % (
                        str(offset))
            offset_real = [0] * axis + offset
W
wjj19950828 已提交
930 931 932 933
        if axis > 0:
            crop_shape = node.in_shapes[0][:axis] + node.in_shapes[1][axis:]
        else:
            crop_shape = node.in_shapes[1]
S
SunAhong1993 已提交
934
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
935 936 937
            "paddle.crop",
            inputs={"x": input.name},
            outputs=[node.layer_name],
W
wjj19950828 已提交
938
            shape=crop_shape,
S
SunAhong1993 已提交
939
            offsets=list(offset_real))
S
SunAhong1993 已提交
940 941 942 943 944

    def Flatten(self, node):
        assert len(
            node.
            inputs) == 1, "The count of DetectionOutput node\'s input is not 1."
S
SunAhong1993 已提交
945
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
946
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
947
            "paddle.reshape",
S
SunAhong1993 已提交
948
            inputs={"x": input.name},
S
SunAhong1993 已提交
949
            outputs=[node.layer_name],
S
SunAhong1993 已提交
950
            shape=node.out_shapes[0])
S
SunAhong1993 已提交
951 952 953 954

    def Power(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
S
SunAhong1993 已提交
955
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
956 957 958 959 960 961
        params = node.layer.power_param
        layer_attrs = {
            'scale': params.scale,
            'bias': params.shift,
            'bias_after_scale': True
        }
S
SunAhong1993 已提交
962
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
963
            "paddle.scale",
S
SunAhong1993 已提交
964
            inputs={"x": input.name},
S
SunAhong1993 已提交
965 966
            outputs=[node.layer_name],
            **layer_attrs)
W
WJJ1995 已提交
967 968 969 970 971 972
        if params.power != 1:
            self.paddle_graph.add_layer(
                "paddle.pow",
                inputs={"x": node.layer_name,
                        "y": params.power},
                outputs=[node.layer_name])
S
SunAhong1993 已提交
973 974 975 976

    def Reduction(self, node):
        assert len(
            node.inputs) == 1, "The count of Reduction node\'s input is not 1."
S
SunAhong1993 已提交
977
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
978 979 980 981 982 983
        params = node.layer.reduction_param
        operation = params.operation
        axis = params.axis
        coeff = params.coeff
        assert operation >= 1 and operation <= 4, "reduction reduction [%s] error" % (
            operation)
S
SunAhong1993 已提交
984
        input_len = len(node.in_shapes[0])
S
SunAhong1993 已提交
985 986 987 988
        if axis < 0:
            axis += input_len + 1
        dim = list(range(input_len))
        # operation = SUM
S
SunAhong1993 已提交
989
        if operation == 1:
S
SunAhong1993 已提交
990 991 992 993
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
994
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
995
                "paddle.sum",
S
SunAhong1993 已提交
996
                inputs={"input": input.name},
S
SunAhong1993 已提交
997 998 999
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = ASUM
S
SunAhong1993 已提交
1000
        elif operation == 2:
S
SunAhong1993 已提交
1001
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1002
                "paddle.abs",
S
SunAhong1993 已提交
1003
                inputs={"x": input.name},
S
SunAhong1993 已提交
1004 1005 1006 1007 1008
                outputs=[node.layer_name])
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
1009
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1010 1011 1012 1013 1014
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = SUMSQ
S
SunAhong1993 已提交
1015
        elif operation == 3:
S
SunAhong1993 已提交
1016
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1017
                "paddle.pow",
S
SunAhong1993 已提交
1018
                inputs={"x": input.name},
S
SunAhong1993 已提交
1019 1020 1021 1022 1023 1024
                outputs=[node.layer_name],
                exponent=2.0)
            layer_attrs = {
                "dim": dim[axis:],
                "keep_dim": False,
            }
S
SunAhong1993 已提交
1025
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1026 1027 1028 1029 1030
                "paddle.sum",
                inputs={"input": node.layer_name},
                outputs=[node.layer_name],
                **layer_attrs)
        # operation = MEAN
S
SunAhong1993 已提交
1031
        else:
S
SunAhong1993 已提交
1032
            layer_attrs = {
S
SunAhong1993 已提交
1033 1034
                "axis": dim[axis:],
                "keepdim": False,
S
SunAhong1993 已提交
1035
            }
S
SunAhong1993 已提交
1036
            self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1037
                "paddle.mean",
S
SunAhong1993 已提交
1038
                inputs={"x": input.name},
S
SunAhong1993 已提交
1039 1040
                outputs=[node.layer_name],
                **layer_attrs)
S
SunAhong1993 已提交
1041
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1042 1043 1044 1045
            "paddle.scale",
            inputs={"x": node.layer_name},
            outputs=[node.layer_name],
            scale=coeff)
S
SunAhong1993 已提交
1046

S
SunAhong1993 已提交
1047
    def DetectionOutput(self, node):
S
SunAhong1993 已提交
1048 1049
        detection_output_name = name_generator("detection_output",
                                               self.nn_name2id)
S
SunAhong1993 已提交
1050 1051
        output_name = node.layer_name
        layer_outputs = [detection_output_name, output_name]
S
SunAhong1993 已提交
1052
        assert len(
S
SunAhong1993 已提交
1053 1054
            node.
            inputs) == 3, "The count of DetectionOutput node\'s input is not 3."
S
SunAhong1993 已提交
1055
        inputs_dict = dict()
S
SunAhong1993 已提交
1056
        for i in range(len(node.inputs)):
S
SunAhong1993 已提交
1057
            input = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1058
            if i == 1:
S
SunAhong1993 已提交
1059
                input = self.graph.get_input_node(node, idx=i, copy=True)
S
SunAhong1993 已提交
1060 1061 1062
                while input is not None \
                      and input.layer_type != 'Softmax' \
                      and input.layer_type != 'Sigmoid':
S
SunAhong1993 已提交
1063
                    input = self.graph.get_input_node(input, idx=0, copy=True)
S
SunAhong1993 已提交
1064
                assert input is not None, 'This kind of DetectionOutput is not supported!'
S
SunAhong1993 已提交
1065 1066
                input = self.graph.get_input_node(input, idx=0, copy=True)
            inputs_dict["x{}".format(i)] = input.name
S
SunAhong1993 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        params = node.layer.detection_output_param
        nms_param = params.nms_param
        nms_param_dict = dict()
        nms_param_dict["nms_threshold"] = nms_param.nms_threshold
        nms_param_dict["top_k"] = nms_param.top_k
        nms_param_dict["eta"] = nms_param.eta
        if nms_param is None:
            nms_param_dict = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        default = {"nms_threshold": 0.3, "top_k": 10, "eta": 1.0}
        fields = ["eta", "top_k", "nms_threshold"]
        for f in default.keys():
            if f not in nms_param_dict:
                nms_param_dict[f] = default[f]
        layer_attrs = {
            "background_label": params.background_label_id,
            "nms_threshold": nms_param_dict["nms_threshold"],
            "nms_top_k": nms_param_dict["top_k"],
            "keep_top_k": params.keep_top_k,
            "score_threshold": params.confidence_threshold,
S
SunAhong1993 已提交
1086 1087
            "nms_eta": nms_param_dict["eta"]
        }
S
SunAhong1993 已提交
1088 1089
        self.paddle_graph.add_layer(
            kernel="custom_layer:DetectionOutput",
S
SunAhong1993 已提交
1090
            inputs=inputs_dict,
S
SunAhong1993 已提交
1091
            outputs=layer_outputs,
S
SunAhong1993 已提交
1092
            **layer_attrs)
S
SunAhong1993 已提交
1093

S
SunAhong1993 已提交
1094
    def Normalize(self, node):
S
SunAhong1993 已提交
1095 1096 1097
        normalize_name = name_generator("normalize", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [normalize_name, output_name]
S
SunAhong1993 已提交
1098 1099
        assert len(
            node.inputs) == 1, "The count of Normalize node\'s input is not 1."
S
SunAhong1993 已提交
1100
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1101
        params = node.layer.norm_param
S
SunAhong1993 已提交
1102
        param_name = node.layer_name + "_scale"
S
SunAhong1993 已提交
1103 1104 1105 1106
        if node.data is None or len(node.data) != 1:
            print(
                "The parameter of {} (type is {}) is not set. So we set the parameters as 0"
                .format(node.layer_name, node.layer_type))
S
SunAhong1993 已提交
1107 1108
            self.params[param_name] = \
                np.zeros([1] if params.channel_shared else [node.in_shapes[0][1]]).astype("float32")
S
SunAhong1993 已提交
1109
        else:
S
SunAhong1993 已提交
1110
            self.params[param_name] = _adjust_parameters(node)[0]
S
SunAhong1993 已提交
1111

S
SunAhong1993 已提交
1112 1113 1114 1115 1116 1117 1118
        self.paddle_graph.add_layer(
            "self.create_parameter",
            inputs={},
            outputs=[param_name],
            shape=self.params[param_name].shape,
            attr=string(param_name))
        inputs_dict = {}
S
SunAhong1993 已提交
1119
        layer_attrs = {"axis": -1 if params.channel_shared else 1}
S
SunAhong1993 已提交
1120
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1121
            "custom_layer:Normalize",
S
SunAhong1993 已提交
1122 1123
            inputs={"x": input.name,
                    "param": param_name},
S
SunAhong1993 已提交
1124 1125
            outputs=layer_outputs,
            **layer_attrs)
S
SunAhong1993 已提交
1126

S
SunAhong1993 已提交
1127 1128 1129
    def Permute(self, node):
        assert len(
            node.inputs) == 1, "The count of Permute node\'s input is not 1."
S
SunAhong1993 已提交
1130
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1131
        params = node.layer.permute_param
S
SunAhong1993 已提交
1132
        order = list(params.order)
S
SunAhong1993 已提交
1133
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1134
            "paddle.transpose",
S
SunAhong1993 已提交
1135
            inputs={"x": input.name},
S
SunAhong1993 已提交
1136 1137
            outputs=[node.layer_name],
            perm=order)
S
SunAhong1993 已提交
1138

S
SunAhong1993 已提交
1139
    def PriorBox(self, node):
S
SunAhong1993 已提交
1140 1141 1142
        priorbox_name = name_generator("priorbox", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [priorbox_name, output_name]
S
SunAhong1993 已提交
1143 1144
        assert len(
            node.inputs) == 2, "The count of PriorBox node\'s input is not 2."
S
SunAhong1993 已提交
1145 1146
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1147
        inputs_dict = {}
S
SunAhong1993 已提交
1148 1149
        inputs_dict["x0"] = input0.name
        inputs_dict["x1"] = input1.name
S
SunAhong1993 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        params = node.layer.prior_box_param
        steps = tuple(params.step) if type(params.step) \
                is list or type(params.step) is tuple \
                else (params.step, params.step)
        layer_attrs = {
            "min_sizes": params.min_size,
            "max_sizes": params.max_size,
            "aspect_ratios": params.aspect_ratio,
            "variance": params.variance,
            "flip": params.flip,
            "clip": params.clip,
            "steps": steps,
            "offset": params.offset,
S
SunAhong1993 已提交
1163 1164
            "min_max_aspect_ratios_order": True
        }
S
SunAhong1993 已提交
1165 1166
        self.paddle_graph.add_layer(
            "custom_layer:PriorBox",
S
SunAhong1993 已提交
1167
            inputs=inputs_dict,
S
SunAhong1993 已提交
1168
            outputs=layer_outputs,
S
SunAhong1993 已提交
1169
            **layer_attrs)
S
SunAhong1993 已提交
1170

S
SunAhong1993 已提交
1171
    def ReLU6(self, node):
S
SunAhong1993 已提交
1172
        relu6_name = name_generator("relu6", self.nn_name2id)
S
SunAhong1993 已提交
1173 1174 1175 1176
        output_name = node.layer_name
        layer_outputs = [relu6_name, output_name]
        assert len(
            node.inputs) == 1, "The count of RelU6 node\'s input is not 1."
S
SunAhong1993 已提交
1177
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1178
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1179
            "paddle.nn.ReLU6",
S
SunAhong1993 已提交
1180
            inputs={"input": input.name},
S
SunAhong1993 已提交
1181
            outputs=layer_outputs)
S
SunAhong1993 已提交
1182

S
SunAhong1993 已提交
1183
    def ROIPooling(self, node):
S
SunAhong1993 已提交
1184 1185 1186
        roipooling_name = name_generator("roipooling", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [roipooling_name, output_name]
S
SunAhong1993 已提交
1187 1188
        assert len(
            node.inputs) == 2, "The count of ROIPooling node\'s input is not 2."
S
SunAhong1993 已提交
1189 1190
        input0 = self.graph.get_input_node(node, idx=0, copy=True)
        input1 = self.graph.get_input_node(node, idx=1, copy=True)
S
SunAhong1993 已提交
1191
        inputs_dict = {}
S
SunAhong1993 已提交
1192 1193
        inputs_dict["x0"] = input0.name
        inputs_dict["x1"] = input1.name
S
SunAhong1993 已提交
1194 1195 1196 1197
        params = node.layer.roi_pooling_param
        layer_attrs = {
            "pooled_height": params.pooled_h,
            "pooled_width": params.pooled_w,
S
SunAhong1993 已提交
1198 1199
            "spatial_scale": params.spatial_scale
        }
S
SunAhong1993 已提交
1200
        self.paddle_graph.add_layer(
S
SunAhong1993 已提交
1201
            "custom_layer:ROIPooling",
S
SunAhong1993 已提交
1202
            inputs=inputs_dict,
S
SunAhong1993 已提交
1203
            outputs=layer_outputs,
S
SunAhong1993 已提交
1204
            **layer_attrs)
S
SunAhong1993 已提交
1205

S
SunAhong1993 已提交
1206
    def ShuffleChannel(self, node):
S
SunAhong1993 已提交
1207 1208
        assert len(node.inputs
                   ) == 1, "The count of ShuffleChannel node\'s input is not 1."
S
SunAhong1993 已提交
1209
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1210
        params = node.layer.shuffle_channel_param
S
SunAhong1993 已提交
1211
        self.paddle_graph.add_layer(
W
wjj19950828 已提交
1212
            "paddle.nn.functional.channel_shuffle",
S
SunAhong1993 已提交
1213
            inputs={"x": input.name},
S
SunAhong1993 已提交
1214
            outputs=[node.layer_name],
W
wjj19950828 已提交
1215
            groups=params.group)
S
SunAhong1993 已提交
1216

S
SunAhong1993 已提交
1217 1218 1219
    def Upsample(self, node):
        assert len(
            node.inputs) == 1, "The count of Upsample node\'s input is not 1."
S
SunAhong1993 已提交
1220
        input = self.graph.get_input_node(node, idx=0, copy=True)
S
SunAhong1993 已提交
1221 1222 1223 1224
        params = node.layer.upsample_param
        layer_attrs = {
            "align_corners": False,
            "scale_factor": params.scale,
S
SunAhong1993 已提交
1225 1226
            "mode": "nearest"
        }
S
SunAhong1993 已提交
1227
        self.paddle_graph.add_layer(
1228 1229
            "paddle.nn.functional.interpolate",
            inputs={"x": input.name},
S
SunAhong1993 已提交
1230 1231
            outputs=[node.layer_name],
            **layer_attrs)
S
SunAhong1993 已提交
1232

S
SunAhong1993 已提交
1233
    def Select(self, node):
S
SunAhong1993 已提交
1234 1235 1236
        select_name = name_generator("select", self.nn_name2id)
        output_name = node.layer_name
        layer_outputs = [select_name, output_name]
S
SunAhong1993 已提交
1237 1238
        assert len(
            node.inputs) == 1, "The count of Select node\'s input is not 1."
S
SunAhong1993 已提交
1239 1240
        input = self.graph.get_input_node(node, idx=0, copy=True)
        input_shape = node.in_shapes[0]
S
SunAhong1993 已提交
1241 1242 1243 1244
        params = node.layer.select_param
        layer_attrs = {
            "input_shape": input_shape,
            "point": params.slice_point,
S
SunAhong1993 已提交
1245 1246
            "axis": params.axis
        }
S
SunAhong1993 已提交
1247 1248
        self.paddle_graph.add_layer(
            "custom_layer:Select",
S
SunAhong1993 已提交
1249
            inputs={"x": input.name},
S
SunAhong1993 已提交
1250
            outputs=layer_outputs,
S
SunAhong1993 已提交
1251
            **layer_attrs)