tf_decoder.py 19.4 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode, self).__init__(
                layer,
                layer.name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode, self).__init__(
                layer,
                layer_name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

J
jiangjiajun 已提交
41 42 43 44 45 46 47
        self.dtype_map = {
            1: "float32",
            3: "int32",
            4: "uint8",
            9: "int64",
            10: "bool"
        }
48 49 50

    @property
    def out_shapes(self):
J
jiangjiajun@baidu.com 已提交
51 52 53 54
        if self.layer_type == "OneShotIterator":
            values = self.layer.attr["output_shapes"].list.shape
        else:
            values = self.layer.attr["_output_shapes"].list.shape
55 56 57 58 59 60 61 62
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
63
        keys = ['dtype', 'Tidx', 'T', 'DstT']
64 65 66 67
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
J
jiangjiajun@baidu.com 已提交
68 69
        if dtype == 0:
            dtype = self.layer.attr['output_types'].list.type[0]
70 71 72 73
        if dtype not in self.dtype_map:
            raise Exception("Dtype[{}] not in dtype_map".format(dtype))
        return self.dtype_map[dtype]

J
jiangjiajun 已提交
74 75 76 77 78 79 80 81 82
    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

J
jiangjiajun 已提交
83 84 85 86 87 88 89 90
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
112 113

class TFGraph(Graph):
J
jiangjiajun 已提交
114
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
115
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
116
        self.identity_map = dict()
J
jiangjiajun 已提交
117
        self.multi_out_ops = ['Split', 'SplitV']
J
jiangjiajun 已提交
118
        self.tf_data_format = data_format
J
jiangjiajun 已提交
119 120 121

    def build(self):
        for layer in self.model.node:
J
jiangjiajun 已提交
122
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
123 124
                '-', '_')] = TFGraphNode(
                    layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
125

J
jiangjiajun 已提交
126 127
        for layer_name, node in self.node_map.items():
            for in_node in node.layer.input:
J
jiangjiajun 已提交
128 129
                in_node = in_node.replace('/', '_').replace('-', '_').replace(
                    '^', '')
J
jiangjiajun 已提交
130 131
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
132
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
133
                    else:
134 135 136
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
137 138 139
                else:
                    self.connect(in_node, layer_name)

140
        super(TFGraph, self).build()
J
jiangjiajun 已提交
141

J
jiangjiajun 已提交
142 143
        # tensorflow graph optimize
        self._remove_isolated_node()
J
jiangjiajun@baidu.com 已提交
144
        self._optimize_dialiation_conv()
J
jiangjiajun 已提交
145
        self._remove_identity_node()
J
jiangjiajun 已提交
146
        self._remove_cast_node()
J
jiangjiajun 已提交
147 148 149

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
150
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
151 152 153
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
154
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
155 156
        if node is None:
            return None
J
jiangjiajun 已提交
157 158 159
        if node.layer_type == "Switch":
            if hasattr(node, 'index'):
                del node.index
J
jiangjiajun 已提交
160 161 162
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
J
jiangjiajun 已提交
163

J
jiangjiajun 已提交
164 165 166 167 168
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
169
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun@baidu.com 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def _optimize_dialiation_conv(self):
        for name in list(self.node_map.keys()):
            node = self.node_map[name]
            if node.layer_type == "SpaceToBatchND":
                is_dilation = True
                out_node0 = self.node_map[node.outputs[0]]
                if out_node0.layer_type != 'ExpandDims':
                    is_dilation = False
                    continue
                out_node1 = self.node_map[out_node0.outputs[0]]
                if out_node1.layer_type != 'Conv2D':
                    is_dilation = False
                    continue
                out_node2 = self.node_map[out_node1.outputs[0]]
                if out_node2.layer_type != 'Squeeze':
                    is_dilation = False
                    continue
                out_node3 = self.node_map[out_node2.outputs[0]]
                if out_node3.layer_type != 'BatchToSpaceND':
                    is_dilation = False
                    continue

                if is_dilation:
                    node.skip = True
                    out_node3.skip = True
                    block_shape = self.node_map[node.inputs[1]]
                    out_node1.dilation = block_shape.value.tolist()

J
jiangjiajun 已提交
212 213 214 215
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
216
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
217 218 219
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
220
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
221 222 223 224 225 226 227 228 229
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
230 231

    def _remove_identity_node(self):
J
jiangjiajun 已提交
232 233
        identity_ops = [
            'Identity', 'StopGradient', 'Switch', 'Merge',
J
jiangjiajun@baidu.com 已提交
234
            'PlaceholderWithDefault', 'IteratorGetNext'
J
jiangjiajun 已提交
235
        ]
J
jiangjiajun 已提交
236 237
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
238
            if node.layer_type in identity_ops:
J
jiangjiajun 已提交
239 240 241 242 243
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
244
            self.remove_node(node_name)
J
jiangjiajun 已提交
245 246 247

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
248 249 250 251
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
273 274 275 276 277 278 279 280 281 282 283
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        current_node = node.tf_data_format
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
284

J
jiangjiajun 已提交
285
class TFDecoder(object):
286
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
287 288 289 290
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
J
jiangjiajun 已提交
291
        self.input_info = dict()
292
        self.define_input_shape = define_input_shape
293 294 295 296 297
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
298
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
299
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
300
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
301
            self.sess.graph.as_default()
J
jiangjiajun 已提交
302
            tf.import_graph_def(graph_def, name='', input_map=input_map)
303

304 305 306 307 308
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
309

J
jiangjiajun 已提交
310
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
311
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
312
        self.tf_graph.build()
J
jiangjiajun 已提交
313 314 315 316 317 318

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
319 320

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
321
        numpy.random.seed(13)
J
jiangjiajun 已提交
322 323 324
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
J
jiangjiajun@baidu.com 已提交
325
            if layer.op != "Placeholder" and layer.op != "OneShotIterator":
J
jiangjiajun 已提交
326 327
                continue
            graph_node = TFGraphNode(layer)
328
            dtype = graph_node.layer.attr['dtype'].type
J
jiangjiajun 已提交
329 330

            need_define_shape = 0
331 332 333 334 335
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
336 337 338 339 340 341 342
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

J
jiangjiajun@baidu.com 已提交
343
            if need_define_shape == 1:
J
fix bug  
jiangjiajun 已提交
344 345 346 347 348 349
                try:
                    shape = graph_node.out_shapes[0]
                    if len(shape) > 0 and shape.count(-1) < 2:
                        need_define_shape = 0
                except:
                    pass
J
jiangjiajun@baidu.com 已提交
350

J
jiangjiajun 已提交
351
            if need_define_shape > 0:
352 353 354 355
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
356
                if need_define_shape == 1:
J
jiangjiajun 已提交
357 358
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
359
                elif need_define_shape == 2:
J
jiangjiajun 已提交
360
                    print(
J
jiangjiajun 已提交
361 362
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
363 364 365 366
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
367
                print(
J
jiangjiajun 已提交
368 369 370 371
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
M
mamingjie-China 已提交
372 373 374 375 376
                    try:
                        shape = raw_input(
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
J
jiangjiajun 已提交
377
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
378
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
379 380 381
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
382 383 384 385
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
386
                assert shape.count(None) <= 1, "Only one dimension can be None"
387 388 389 390 391 392
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
J
jiangjiajun 已提交
393 394 395 396
                    x2paddle_input = tf.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
397

J
jiangjiajun 已提交
398
                input_map["{}:0".format(layer.name)] = x2paddle_input
399 400
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
J
jiangjiajun 已提交
401 402 403 404 405 406 407
                self.input_info["x2paddle_{}".format(layer.name)] = (shape,
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                self.input_info[graph_node.layer_name] = (shape, dtype)

J
jiangjiajun 已提交
408
        return input_map
J
jiangjiajun 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
    def infer_tensor(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        for input_name, info in self.input_info.items():
            (shape, dtype) = cp.deepcopy(info)
            input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
            if shape.count(-1) > 0:
                shape[shape.index(-1)] = 2
            feed[input_tensor] = numpy.random.random_sample(shape)
        output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
        return self.sess.run([output_tensor], feed)[0]

    def infer_shape_tensor(self, graph_node, out_shape=None):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        results = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            results.append(self.sess.run([output_tensor], feed)[0].flatten())

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")
J
jiangjiajun 已提交
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

    def infer_tensor_shape(self, graph_node):
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
        batch_size = [2, 3, 5]
        shapes = list()
        for b in batch_size:
            for input_name, info in self.input_info.items():
                (shape, dtype) = cp.deepcopy(info)
                input_tensor = self.sess.graph.get_tensor_by_name(input_name +
                                                                  ":0")
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
            shape = self.sess.run([output_tensor], feed)[0].shape
            shapes.append(numpy.array(shape))

        compare01 = (shapes[0] == shapes[1])
        compare12 = (shapes[1] == shapes[2])

        if compare01.all() and compare12.all():
            return shape[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            if index[0] != 0:
                raise Exception("Batch size not in the first dimension")
            shapes[0][0] = -1
            return shapes[0].tolist()