tf_op_mapper.py 49.0 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import inspect
J
jiangjiajun 已提交
19
import numpy
J
jiangjiajun 已提交
20
import sys
21

J
jiangjiajun 已提交
22

J
jiangjiajun 已提交
23 24 25 26
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
27 28
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
29 30 31 32
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
33

J
jiangjiajun 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def nhwc_dim_to_nchw(node, dim):
    tf_data_format = list(node.tf_data_format)
    pd_data_format = list(node.pd_data_format)
    if isinstance(dim, list):
        for i in range(len(dim)):
            char = tf_data_format[dim[i]]
            dim[i] = pd_data_format.index(char)
    else:
        char = tf_data_format[dim]
        dim = pd_data_format.index(char)
    return dim

    if dim < 0:
        dim += 4
    if dim > 0:
        dim = (dim + 1) % 4 + int((dim + 1) / 4)
    return dim


J
jiangjiajun 已提交
53
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
54 55 56 57 58 59 60
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
61
        'Rsqrt': ['rsqrt'],
62
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
63
        'Tanh': ['tanh'],
64 65 66
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
J
jiangjiajun 已提交
67 68 69 70 71 72
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
73 74
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
75 76
    }

J
jiangjiajun 已提交
77 78
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
79
        self.decoder = decoder
J
jiangjiajun 已提交
80
        self.graph = decoder.tf_graph
81
        self.batch_node = None
J
jiangjiajun 已提交
82
        self.weights = dict()
J
jiangjiajun 已提交
83
        self.omit_nodes = list()
J
jiangjiajun 已提交
84
        self.used_custom_layers = dict()
85

J
jiangjiajun 已提交
86 87
        not_placeholder = list()
        for name in self.graph.input_nodes:
Q
qili93 已提交
88 89
            if self.graph.get_node(name).layer_type != "Placeholder" 
               and self.graph.get_node(name).layer_type != "OneShotIterator":
J
jiangjiajun 已提交
90 91 92 93
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
94

95
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
J
jiangjiajun 已提交
96
        unsupported_ops = set()
97 98
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...    ".format(i + 1))
99 100
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
101
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
102 103
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
104 105
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
106 107
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
108 109
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
110 111
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
112 113
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
114
            else:
J
jiangjiajun 已提交
115 116
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
117 118 119
            sys.stderr.write(
                "=========={} Ops are not supported yet======\n".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
120
            for op in unsupported_ops:
121
                sys.stderr.write("========== {} ==========\n".format(op))
J
jiangjiajun 已提交
122
            sys.exit(-1)
123
        sys.stderr.write('\nDone!\n')
124

J
jiangjiajun 已提交
125 126 127 128
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
J
jiangjiajun 已提交
129
        #        del in_node.outputs[index]
J
jiangjiajun 已提交
130
        index = out_node.inputs.index(in_node_name)
J
jiangjiajun 已提交
131
        #        del out_node.inputs[index]
J
jiangjiajun 已提交
132 133
        self.omit_nodes.append(in_node.layer_name)

J
jiangjiajun 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
152 153 154 155
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
156 157 158 159
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
J
jiangjiajun 已提交
160 161 162 163 164 165 166 167 168 169 170 171
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
M
modify  
mamingjie-China 已提交
172 173
                if len(x_shape) == 0:
                    x_shape = [1]
J
jiangjiajun 已提交
174
                y_shape = x.out_shapes[0]
M
modify  
mamingjie-China 已提交
175 176
                if len(y_shape) == 0:
                    y_shape = [1]
J
jiangjiajun 已提交
177
            else:
J
jiangjiajun 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                if len(x_shape) == 1 and len(y_shape) == 4 and x_shape[
                        0] == y_shape[-1] and y_shape.count(-1) < 1:
                    shape = [1, x_shape[0], 1, 1]
                    attr = {"shape": shape}
                    node.fluid_code.add_layer("reshape",
                                              inputs=x_input,
                                              output="reshape_x",
                                              param_attr=attr)
                    if y_shape[0] != 1:
                        attr = {"expand_times": [y_shape[0], 1, 1, 1]}
                        node.fluid_code.add_layer("expand",
                                                  inputs="reshape_x",
                                                  output="reshape_x",
                                                  param_attr=attr)
                    inputs = {"x": "reshape_x", "y": y_input}
                    node.fluid_code.add_layer(op_type,
                                              inputs=inputs,
                                              output=node,
                                              param_attr=None)
                    return
                else:
                    raise Exception("Unexpected situation happend")
J
jiangjiajun 已提交
200

J
jiangjiajun 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213
        if len(x_shape) == 4 and len(y_shape) == 1:
            if x_input.tf_data_format == "NHWC":
                axis = 1
            else:
                axis = -1
            attr = {"axis": axis}
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
            return

J
jiangjiajun 已提交
214 215 216 217 218 219
        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
J
jiangjiajun 已提交
220 221 222 223
            if x_shape.count(-1) > 2:
                x_shape = self.decoder.infer_tensor_shape(x_input)
            if y_shape.count(-1) > 2:
                y_shape = self.decoder.infer_tensor_shape(y_input)
J
jiangjiajun 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
J
jiangjiajun 已提交
240 241 242 243
                if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
                if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
244 245 246 247 248 249 250
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
J
jiangjiajun 已提交
251 252 253 254
                if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
                if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
255 256 257 258 259 260 261 262 263 264 265 266
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

267 268
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
269 270
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
J
jiangjiajun 已提交
271 272 273 274
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        elif node.tf_data_format == "NCHW" and len(shape) == 4:
            self.graph.data_format_propagation(node)
275 276
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
277
            'dtype': string(dtype),
278
            'shape': shape,
J
jiangjiajun 已提交
279 280
            'name': string(node.layer_name),
            'append_batch_size': False
281
        }
M
mamingjie-China 已提交
282

283 284 285
        if shape[0] < 0:
            self.batch_node = node

J
jiangjiajun 已提交
286 287 288 289 290
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun@baidu.com 已提交
291 292 293
    def OneShotIterator(self, node):
        return self.Placeholder(node)

J
jiangjiajun 已提交
294 295 296 297 298 299 300 301 302 303
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316
        self.weights[node.layer_name] = node.value

        if node.tf_data_format == "NHWC":
            if len(shape) == 4:
                shape = [shape[i] for i in [0, 3, 1, 2]]
            if len(shape) == 3:
                shape = [shape[i] for i in [2, 0, 1]]
                self.weights[node.layer_name] = numpy.transpose(
                    node.value, (2, 0, 1))
        elif node.tf_data_format == "NCHW":
            if len(shape) == 4:
                self.graph.data_format_propagation(node)

J
jiangjiajun 已提交
317 318 319 320 321 322 323 324 325 326 327 328
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
329 330
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
331
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
332
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
333 334 335
        perm.fluid_code.clear()
        perm = perm.value.tolist()

J
jiangjiajun 已提交
336
        if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
337 338 339 340 341
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
342 343 344
            node.tf_data_format = "NCHW"
            self.graph.data_format_propagation(node)
        elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
345 346 347 348 349
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            node.tf_data_format = "NHWC"
            self.graph.data_format_propagation(node)
        elif len(input.out_shapes[0]) > 4:
            tf_data_format = list(input.tf_data_format)
            pd_data_format = list(input.pd_data_format)
            new_perm = [i for i in range(len(perm))]
            for i in range(len(perm)):
                char0 = tf_data_format[i]
                char1 = tf_data_format[perm[i]]
                index0 = pd_data_format.index(char0)
                index1 = pd_data_format.index(char1)
                new_perm[index0] = index1
            node.tf_data_format = [tf_data_format[i] for i in perm]
            node.pd_data_format = [pd_data_format[i] for i in perm]
            attr = {'perm': new_perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif len(node.out_shapes[0]) != 4:
            attr = {'perm': perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            raise Exception("Unexpected situation happend in Transpose OP")
J
jiangjiajun 已提交
377

J
jiangjiajun 已提交
378 379
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
380

J
jiangjiajun 已提交
381
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
382 383 384
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
385 386 387 388
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
389
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
390

J
jiangjiajun 已提交
391
        if not channel_first:
J
jiangjiajun 已提交
392 393
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
394
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
395 396
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
397 398

        attr = {
J
jiangjiajun 已提交
399
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
400
            "pool_type": string("max"),
M
mamingjie-China 已提交
401
            "pool_padding": string(pad_mode),
J
jiangjiajun 已提交
402
            "pool_stride": strides[2:4]
J
jiangjiajun 已提交
403
        }
J
jiangjiajun 已提交
404 405 406 407
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
408 409 410 411 412

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
J
jiangjiajun 已提交
413
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
414

J
jiangjiajun 已提交
415
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
416 417
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
418
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
419 420 421
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
422 423 424 425 426
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
427 428 429

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
430 431 432 433 434

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
435 436
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
437

J
jiangjiajun 已提交
438 439 440 441 442 443
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
444
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
445
            "padding": string(pad_mode)
J
jiangjiajun 已提交
446
        }
J
jiangjiajun 已提交
447 448 449 450
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
451

J
jiangjiajun 已提交
452 453 454 455 456 457 458 459 460 461 462 463
    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        axis = -1
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = 1
        inputs = {"x": input, "y": bias}
        attr = {"axis": axis}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
464 465 466 467 468 469 470

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
471 472
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
473 474 475 476 477

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
478 479 480 481
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
J
jiangjiajun 已提交
482 483
        if channel_first:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
484

J
jiangjiajun 已提交
485 486 487 488 489 490 491 492 493 494
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
495
                                  inputs=input,
J
jiangjiajun 已提交
496 497 498
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun@baidu.com 已提交
499 500 501
    def FusedBatchNormV3(self, node):
        return self.FusedBatchNorm(node)

J
jiangjiajun 已提交
502 503 504 505
    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
506
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
507

J
jiangjiajun 已提交
508
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
509 510
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
511
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
512 513 514
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
515 516 517 518 519
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
520 521 522

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
523 524 525 526 527

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
528 529
        else:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
530 531 532 533 534 535 536 537

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
J
jiangjiajun 已提交
538
            "groups": k_size[3] * in_shape[1],
J
jiangjiajun 已提交
539
            "use_cudnn": False,
M
mamingjie-China 已提交
540
            "padding": string(pad_mode)
J
jiangjiajun 已提交
541
        }
J
jiangjiajun 已提交
542
        node.fluid_code.add_layer("conv2d",
J
jiangjiajun 已提交
543
                                  inputs=input,
J
jiangjiajun 已提交
544 545
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
546

J
jiangjiajun 已提交
547 548 549
    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
550
        is_variable = False
J
jiangjiajun 已提交
551 552
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
553
            self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
554 555
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
556 557 558
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
J
jiangjiajun 已提交
559 560 561 562 563
                self.add_omit_nodes(param.layer_name, node.layer_name)
            elif shape.count(-1) == 2 and shape[0] == -1:
                shape[0] = 0
                attr = {"shape": shape}
                self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
582 583 584 585 586
                is_variable = True

        # to change [192, -1]->[-1, 192], allways put -1 in the first dimension
        # optimization for Paddle-Lite
        in_shape = input.out_shapes[0]
J
fix bug  
jiangjiajun 已提交
587
        if not is_variable and in_shape.count(-1) < 1:
J
jiangjiajun 已提交
588 589 590 591 592 593 594 595 596 597 598 599
            total_size = 1
            for i in range(len(in_shape)):
                total_size *= in_shape[i]
            for i in range(len(attr["shape"])):
                if attr["shape"][i] == 0:
                    attr["shape"][i] = in_shape[i]
                if attr["shape"][i] != -1:
                    total_size /= attr["shape"][i]
            if attr["shape"].count(-1) > 0:
                index = attr["shape"].index(-1)
                attr["shape"][index] = int(total_size)
                attr["shape"][0] = -1
600 601 602 603 604 605 606 607 608 609 610 611 612 613

        if len(input.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
            if len(attr["shape"]) < 3:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                return

J
jiangjiajun 已提交
614
        if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
J
jiangjiajun 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
            input_shape = self.decoder.infer_tensor(input).shape
            if input_shape[1] == attr["shape"][1]:
                attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
            else:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                perm = {"perm": [0, 3, 1, 2]}
                node.fluid_code.add_layer("transpose",
                                          inputs=node,
                                          output=node,
                                          param_attr=perm)
                return
J
jiangjiajun 已提交
634 635 636
        if len(attr["shape"]) == 5:
            attr["shape"] = [attr["shape"][i] for i in [0, 1, 4, 2, 3]]

J
jiangjiajun 已提交
637 638 639 640 641 642 643
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
644

J
jiangjiajun 已提交
645
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
646 647 648
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
649 650 651 652 653 654 655 656 657
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
658
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
659 660
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
661 662

        attr = {
J
jiangjiajun 已提交
663
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
664
            "pool_type": string("avg"),
M
mamingjie-China 已提交
665 666
            "pool_stride": strides[2:4],
            "pool_padding": string(pad_mode)
J
jiangjiajun 已提交
667 668
        }
        node.fluid_code.add_layer("pool2d",
J
jiangjiajun 已提交
669
                                  inputs=input,
J
jiangjiajun 已提交
670 671 672
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
673 674 675 676 677 678
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
679 680
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
681 682 683
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)
J
jiangjiajun 已提交
684 685 686 687 688 689 690 691
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
692 693

    def ConcatV2(self, node):
J
jiangjiajun 已提交
694 695 696 697
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
698 699
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
700
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
701 702 703 704 705
        axis = axis.value
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(inputs[0], axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
706 707 708 709
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
710 711 712 713

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
714
        self.add_omit_nodes(expand_times.layer_name, node.layer_name)
715 716 717 718
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
        else:
            expand_times = self.decoder.infer_shape_tensor(expand_times)
J
jiangjiajun 已提交
719 720 721
        if input.tf_data_format == "NHWC":
            if len(input.out_shapes[0]) == 4:
                expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
J
Jason 已提交
722
            elif len(input.out_shapes[0]) == 3:
J
jiangjiajun 已提交
723
                expand_times = [expand_times[i] for i in [2, 0, 1]]
724 725 726 727
        for i in range(len(expand_times)):
            if expand_times[i] < 0:
                expand_times[i] = 1

J
jiangjiajun 已提交
728
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
729 730 731 732
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
733 734

    def Pack(self, node):
J
jiangjiajun 已提交
735 736 737
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
738 739 740 741 742 743 744 745 746 747 748 749
        axis = node.get_attr("axis")
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            tf_data_format = list(inputs[0].tf_data_format)
            tf_data_format.insert(axis, str(len(tf_data_format)))
            axis = nhwc_dim_to_nchw(inputs[0], axis)
            pd_data_format = list(inputs[0].pd_data_format)
            pd_data_format.insert(axis, str(len(pd_data_format)))
            node.tf_data_format = "".join(tf_data_format)
            node.pd_data_format = "".join(pd_data_format)

        attr = {"axis": axis}
J
jiangjiajun 已提交
750 751 752
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
753
                                  param_attr=attr)
J
jiangjiajun 已提交
754 755 756

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
757
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
758
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
759
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
J
jiangjiajun 已提交
760 761 762
        paddings = paddings.value.flatten().tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
J
jiangjiajun 已提交
763 764 765 766 767 768

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
J
jiangjiajun 已提交
769
        attr = {"paddings": paddings}
J
jiangjiajun 已提交
770
        node.fluid_code.add_layer(pad_op,
J
jiangjiajun 已提交
771 772 773
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
774

J
jiangjiajun 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    def MirrorPad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
        assert paddings.layer_type == "Const", "Padding should be Const"
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
        paddings = paddings.value.flatten().tolist()
        mode = node.get_attr("mode").decode()
        assert mode == "REFLECT", "Only support 'REFLECT` mode in MirrorPad"
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
        attr = {"paddings": paddings, "mode": string("reflect")}
        node.fluid_code.add_layer(pad_op,
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
797 798 799 800
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
M
mamingjie-China 已提交
801 802 803
        self.add_omit_nodes(start.layer_name, node.layer_name)
        self.add_omit_nodes(limit.layer_name, node.layer_name)
        self.add_omit_nodes(delta.layer_name, node.layer_name)
J
jiangjiajun 已提交
804 805
        if start.layer_type == "Const":
            start = start.value
806 807
        else:
            start = self.decoder.infer_tensor(start)
J
jiangjiajun 已提交
808 809
        if limit.layer_type == "Const":
            limit = limit.value
810 811
        else:
            limit = self.decoder.infer_tensor(limit)
J
jiangjiajun 已提交
812 813
        if delta.layer_type == "Const":
            delta = delta.value
814 815 816
        else:
            delta = self.decoder.infer_tensor(delta)

J
jiangjiajun 已提交
817
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
818
        attr = {"dtype": string(node.dtype)}
819 820 821
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
J
Jason 已提交
822
                                  param_attr=attr)
J
jiangjiajun 已提交
823 824 825 826 827

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
J
jiangjiajun 已提交
828
        dims = reduce_idx.value.tolist()
J
jiangjiajun 已提交
829
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
830 831 832 833 834 835

        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(dims)):
                dims[i] = nhwc_dim_to_nchw(input, dims[i])

        attr = {"dim": dims, "keep_dim": keep_dims}
J
jiangjiajun 已提交
836 837 838 839 840 841 842 843 844 845 846
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
847 848 849 850 851 852 853 854 855 856
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
857 858 859 860 861 862 863 864 865 866
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
867
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
868 869 870 871
        axis = axis.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
885 886 887
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
J
jiangjiajun 已提交
888 889 890
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

J
jiangjiajun 已提交
891 892 893 894 895 896
        begin = begin.value.tolist()
        end = end.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            begin = [begin[i] for i in [0, 3, 1, 2]]
            end = [end[i] for i in [0, 3, 1, 2]]

J
jiangjiajun 已提交
897 898 899 900 901 902 903 904 905
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        attr = {
            "axes": [i for i in range(len(strides))],
            "starts": begin,
            "ends": end
        }
J
jiangjiajun 已提交
906 907 908 909 910 911 912

        shrink_axis_mask = node.get_attr('shrink_axis_mask')
        squeeze_dims = list()
        for i in range(len(begin)):
            x = shrink_axis_mask >> i & 1
            if x == 1:
                squeeze_dims.append(i)
J
jiangjiajun 已提交
913 914 915 916
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
917 918 919 920 921 922
        if shrink_axis_mask > 0 and len(input.out_shapes[0]) == 5:
            attr = {"axes": squeeze_dims}
            node.fluid_code.add_layer("squeeze",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
923 924 925 926 927

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
928 929
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(size.layer_name, node.layer_name)
J
jiangjiajun 已提交
930 931 932 933 934 935 936 937
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
938

J
jiangjiajun 已提交
939 940 941 942
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            size = [size[i] for i in [0, 3, 1, 2]]
            begin = [begin[i] for i in [0, 3, 1, 2]]

943 944 945 946 947 948 949 950 951 952 953 954
        for i in range(len(size)):
            if size[i] < 0:
                size[i] = 99999999
            else:
                size[i] = size[i] + begin[i]

        attr = {
            "axes": [i for i in range(len(size))],
            "starts": begin,
            "ends": size
        }
        node.fluid_code.add_layer("slice",
J
jiangjiajun 已提交
955 956 957
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
958 959

    def Conv2DBackpropInput(self, node):
960
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
961
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
962 963
        input = self.graph.get_node(node.layer.input[2], copy=True)

964
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
965

J
jiangjiajun 已提交
966
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
967 968
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)

J
jiangjiajun 已提交
969 970 971 972 973 974
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

975
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
976 977
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
978
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
979 980 981
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
982
        pad_mode = node.get_attr("padding").decode()
983 984 985 986
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
987

J
jiangjiajun 已提交
988 989
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
990 991 992 993
        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
994 995
        else:
            self.data_format_propagation(node)
996 997 998 999

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
M
mamingjie-China 已提交
1000
            "num_filters": k_size[2],
1001 1002
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
1003
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
1004 1005
            "padding": string(pad_mode),
            "output_size": out_shape[1:3]
1006
        }
1007 1008 1009 1010
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1011 1012 1013 1014 1015 1016

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1017 1018 1019 1020 1021
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1032 1033 1034 1035 1036
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
1037 1038 1039 1040 1041
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
1042 1043 1044 1045 1046 1047 1048 1049
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1050

J
jiangjiajun 已提交
1051 1052 1053
    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1054
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
1055
        num_split = node.get_attr('num_split')
J
jiangjiajun 已提交
1056 1057 1058 1059 1060
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"num_or_sections": num_split, "dim": dim}
J
jiangjiajun 已提交
1061 1062 1063 1064
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(squeeze_dims)):
                squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
1081 1082
        if axis is None:
            axis = -1 + len(input.out_shapes[0])
J
jiangjiajun 已提交
1083 1084 1085 1086 1087 1088 1089
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1090

1091 1092 1093
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1094
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1110
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1126 1127

    def GreaterEqual(self, node):
J
jiangjiajun 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        self.add_omit_nodes(shape.layer_name, node.layer_name)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
        else:
            shape = self.decoder.infer_shape_tensor(shape)
        if len(shape) == 4 and node.tf_data_format == "NHWC":
            shape = [shape[i] for i in [0, 3, 1, 2]]
        attr = {"shape": shape, "min": 0.0, "max": 0.9999}
        if shape[0] < 0:
            input = self.batch_node
            node.fluid_code.add_layer("uniform_random_batch_size_like",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            node.fluid_code.add_layer("uniform_random",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
J
jiangjiajun 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

    def SquaredDifference(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": node, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)