tf_op_mapper.py 48.9 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
jiangjiajun 已提交
14

J
jiangjiajun 已提交
15 16
from x2paddle.decoder.tf_decoder import TFGraph
from x2paddle.core.op_mapper import OpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.util import *
J
jiangjiajun 已提交
18
import inspect
J
jiangjiajun 已提交
19
import numpy
J
jiangjiajun 已提交
20
import sys
21

J
jiangjiajun 已提交
22

J
jiangjiajun 已提交
23 24 25 26
# compute padding size for SAME mode
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
J
jiangjiajun 已提交
27 28
    if pad_size < 0:
        pad_size = 0
J
jiangjiajun 已提交
29 30 31 32
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]

J
jiangjiajun 已提交
33

J
jiangjiajun 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
def nhwc_dim_to_nchw(node, dim):
    tf_data_format = list(node.tf_data_format)
    pd_data_format = list(node.pd_data_format)
    if isinstance(dim, list):
        for i in range(len(dim)):
            char = tf_data_format[dim[i]]
            dim[i] = pd_data_format.index(char)
    else:
        char = tf_data_format[dim]
        dim = pd_data_format.index(char)
    return dim

    if dim < 0:
        dim += 4
    if dim > 0:
        dim = (dim + 1) % 4 + int((dim + 1) / 4)
    return dim


J
jiangjiajun 已提交
53
class TFOpMapper(OpMapper):
J
jiangjiajun 已提交
54 55 56 57 58 59 60
    directly_map_ops = {
        'Relu': ['relu'],
        'Relu6': ['relu6'],
        'Shape': ['shape'],
        'Abs': ['abs'],
        'Sigmoid': ['sigmoid'],
        'Exp': ['exp'],
J
jiangjiajun 已提交
61
        'Rsqrt': ['rsqrt'],
62
        'swish_f32': ['swish'],
J
jiangjiajun 已提交
63
        'Tanh': ['tanh'],
64 65 66
        'LeakyRelu': ['leaky_relu', {
            'alpha': 'alpha'
        }]
J
jiangjiajun 已提交
67 68 69 70 71 72
    }
    elementwise_ops = {
        'Add': 'elementwise_add',
        'RealDiv': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Maximum': 'elementwise_max',
73 74
        'Mul': 'elementwise_mul',
        'FloorDiv': 'elementwise_floordiv'
J
jiangjiajun 已提交
75 76
    }

J
jiangjiajun 已提交
77 78
    def __init__(self, decoder):
        super(TFOpMapper, self).__init__()
J
jiangjiajun 已提交
79
        self.decoder = decoder
J
jiangjiajun 已提交
80
        self.graph = decoder.tf_graph
81
        self.batch_node = None
J
jiangjiajun 已提交
82
        self.weights = dict()
J
jiangjiajun 已提交
83
        self.omit_nodes = list()
J
jiangjiajun 已提交
84
        self.used_custom_layers = dict()
85

J
jiangjiajun 已提交
86 87
        not_placeholder = list()
        for name in self.graph.input_nodes:
J
jiangjiajun@baidu.com 已提交
88
            if self.graph.get_node(name).layer_type != "Placeholder" and self.graph.get_node(name).layer_type != "OneShotIterator":
J
jiangjiajun 已提交
89 90 91 92
                not_placeholder.append(name)
        for name in not_placeholder:
            idx = self.graph.input_nodes.index(name)
            del self.graph.input_nodes[idx]
J
jiangjiajun 已提交
93

94
        sys.stderr.write("Total nodes: {}\n".format(len(self.graph.topo_sort)))
J
jiangjiajun 已提交
95
        unsupported_ops = set()
96 97
        for i, node_name in enumerate(self.graph.topo_sort):
            sys.stderr.write("\rConverting node {} ...    ".format(i + 1))
98 99
            node = self.graph.get_node(node_name)
            op = node.layer_type
J
jiangjiajun 已提交
100
            if op in self.directly_map_ops:
J
jiangjiajun 已提交
101 102
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
103 104
                self.directly_map(node)
            elif op in self.elementwise_ops:
J
jiangjiajun 已提交
105 106
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
107 108
                self.elementwise_map(node)
            elif hasattr(self, op):
J
jiangjiajun 已提交
109 110
                if len(unsupported_ops) > 0:
                    continue
J
jiangjiajun 已提交
111 112
                func = getattr(self, op)
                func(node)
J
jiangjiajun 已提交
113
            else:
J
jiangjiajun 已提交
114 115
                unsupported_ops.add(op)
        if len(unsupported_ops) > 0:
116 117 118
            sys.stderr.write(
                "=========={} Ops are not supported yet======\n".format(
                    len(unsupported_ops)))
J
jiangjiajun 已提交
119
            for op in unsupported_ops:
120
                sys.stderr.write("========== {} ==========\n".format(op))
J
jiangjiajun 已提交
121
            sys.exit(-1)
122
        sys.stderr.write('\nDone!\n')
123

J
jiangjiajun 已提交
124 125 126 127
    def add_omit_nodes(self, in_node_name, out_node_name):
        in_node = self.graph.get_node(in_node_name)
        out_node = self.graph.get_node(out_node_name)
        index = in_node.outputs.index(out_node_name)
J
jiangjiajun 已提交
128
        #        del in_node.outputs[index]
J
jiangjiajun 已提交
129
        index = out_node.inputs.index(in_node_name)
J
jiangjiajun 已提交
130
        #        del out_node.inputs[index]
J
jiangjiajun 已提交
131 132
        self.omit_nodes.append(in_node.layer_name)

J
jiangjiajun 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def directly_map(self, node):
        assert node.layer_type in self.directly_map_ops
        op_info = self.directly_map_ops[node.layer_type]
        input = self.graph.get_node(node.layer.input[0], copy=True)
        attr = dict()
        for param in op_info[1:]:
            tf_param_name = list(param.keys())[0]
            pd_param_name = list(param.values())[0]
            tf_param = node.get_attr(tf_param_name)
            attr[pd_param_name] = tf_param
        node.fluid_code.add_layer(op_info[0],
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
J
jiangjiajun 已提交
151 152 153 154
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        x_shape = x.out_shapes[0]
        y_shape = y.out_shapes[0]
155 156 157 158
        if len(x_shape) == 0:
            x_shape = [1]
        if len(y_shape) == 0:
            y_shape = [1]
J
jiangjiajun 已提交
159 160 161 162 163 164 165 166 167 168 169 170
        # incomplement broadcasting support for paddle
        x_input = x
        y_input = y
        if len(x_shape) < len(y_shape):
            unrevertable_ops = [
                "elementwise_sub", "elementwise_div", "elementwise_floordiv",
                "elementwise_mod", "elementwise_pow"
            ]
            if op_type not in unrevertable_ops:
                x_input = y
                y_input = x
                x_shape = y.out_shapes[0]
M
modify  
mamingjie-China 已提交
171 172
                if len(x_shape) == 0:
                    x_shape = [1]
J
jiangjiajun 已提交
173
                y_shape = x.out_shapes[0]
M
modify  
mamingjie-China 已提交
174 175
                if len(y_shape) == 0:
                    y_shape = [1]
J
jiangjiajun 已提交
176
            else:
J
jiangjiajun 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
                if len(x_shape) == 1 and len(y_shape) == 4 and x_shape[
                        0] == y_shape[-1] and y_shape.count(-1) < 1:
                    shape = [1, x_shape[0], 1, 1]
                    attr = {"shape": shape}
                    node.fluid_code.add_layer("reshape",
                                              inputs=x_input,
                                              output="reshape_x",
                                              param_attr=attr)
                    if y_shape[0] != 1:
                        attr = {"expand_times": [y_shape[0], 1, 1, 1]}
                        node.fluid_code.add_layer("expand",
                                                  inputs="reshape_x",
                                                  output="reshape_x",
                                                  param_attr=attr)
                    inputs = {"x": "reshape_x", "y": y_input}
                    node.fluid_code.add_layer(op_type,
                                              inputs=inputs,
                                              output=node,
                                              param_attr=None)
                    return
                else:
                    raise Exception("Unexpected situation happend")
J
jiangjiajun 已提交
199

J
jiangjiajun 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212
        if len(x_shape) == 4 and len(y_shape) == 1:
            if x_input.tf_data_format == "NHWC":
                axis = 1
            else:
                axis = -1
            attr = {"axis": axis}
            inputs = {"x": x_input, "y": y_input}
            node.fluid_code.add_layer(op_type,
                                      inputs=inputs,
                                      output=node,
                                      param_attr=attr)
            return

J
jiangjiajun 已提交
213 214 215 216 217 218
        is_sub_seq = True
        for i in range(len(y_shape)):
            index = -1 * i - 1
            if y_shape[index] != x_shape[index]:
                is_sub_seq = False
        if not is_sub_seq:
J
jiangjiajun 已提交
219 220 221 222
            if x_shape.count(-1) > 2:
                x_shape = self.decoder.infer_tensor_shape(x_input)
            if y_shape.count(-1) > 2:
                y_shape = self.decoder.infer_tensor_shape(y_input)
J
jiangjiajun 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
            x_expand_times = [1] * len(x_shape)
            y_expand_times = [1] * len(y_shape)
            x_need_expand = False
            y_need_expand = False
            for i in range(len(y_shape)):
                index = -1 * i - 1
                if y_shape[index] != x_shape[index]:
                    if y_shape[index] == 1:
                        y_expand_times[index] = x_shape[index]
                        y_need_expand = True
                    elif x_shape[index] == 1:
                        x_expand_times[index] = y_shape[index]
                        x_need_expand = True
                    else:
                        raise Exception("Unexpected situation happend")
            if x_need_expand:
J
jiangjiajun 已提交
239 240 241 242
                if len(x_expand_times) == 3 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [2, 0, 1]]
                if len(x_expand_times) == 4 and x.tf_data_format == "NHWC":
                    x_expand_times = [x_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
243 244 245 246 247 248 249
                attr = {"expand_times": x_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=x_input,
                                          output="x_tmp",
                                          param_attr=attr)
                x_input = "x_tmp"
            if y_need_expand:
J
jiangjiajun 已提交
250 251 252 253
                if len(y_expand_times) == 3 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [2, 0, 1]]
                if len(y_expand_times) == 4 and y.tf_data_format == "NHWC":
                    y_expand_times = [y_expand_times[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
254 255 256 257 258 259 260 261 262 263 264 265
                attr = {"expand_times": y_expand_times}
                node.fluid_code.add_layer("expand",
                                          inputs=y_input,
                                          output="y_tmp",
                                          param_attr=attr)
                y_input = "y_tmp"
        inputs = {"x": x_input, "y": y_input}
        node.fluid_code.add_layer(op_type,
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

266 267
    def Placeholder(self, node):
        shape = node.out_shapes[0]
J
jiangjiajun 已提交
268 269
        assert len(shape) != 0, "Unknown shape of input nodes[{}].".format(
            node.layer_name)
J
jiangjiajun 已提交
270 271 272 273
        if node.tf_data_format == "NHWC" and len(shape) == 4:
            shape = [shape[i] for i in [0, 3, 1, 2]]
        elif node.tf_data_format == "NCHW" and len(shape) == 4:
            self.graph.data_format_propagation(node)
274 275
        dtype = node.dtype
        attr = {
J
jiangjiajun 已提交
276
            'dtype': string(dtype),
277
            'shape': shape,
J
jiangjiajun 已提交
278 279
            'name': string(node.layer_name),
            'append_batch_size': False
280
        }
M
mamingjie-China 已提交
281

282 283 284
        if shape[0] < 0:
            self.batch_node = node

J
jiangjiajun 已提交
285 286 287 288 289
        node.fluid_code.add_layer("data",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun@baidu.com 已提交
290 291 292
    def OneShotIterator(self, node):
        return self.Placeholder(node)

J
jiangjiajun 已提交
293 294 295 296 297 298 299 300 301 302
    def Const(self, node):
        shape = node.out_shapes[0]
        dtype = node.dtype
        value = node.value
        initializer = "Constant(0.0)"
        if len(shape) == 0:
            assert value.size == 1, "Unexpected situation happend"
            shape = [1]
            initializer = "Constant({})".format(value)

J
jiangjiajun 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315
        self.weights[node.layer_name] = node.value

        if node.tf_data_format == "NHWC":
            if len(shape) == 4:
                shape = [shape[i] for i in [0, 3, 1, 2]]
            if len(shape) == 3:
                shape = [shape[i] for i in [2, 0, 1]]
                self.weights[node.layer_name] = numpy.transpose(
                    node.value, (2, 0, 1))
        elif node.tf_data_format == "NCHW":
            if len(shape) == 4:
                self.graph.data_format_propagation(node)

J
jiangjiajun 已提交
316 317 318 319 320 321 322 323 324 325 326 327
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': initializer
        }
        node.fluid_code.add_layer("create_parameter",
                                  inputs=None,
                                  output=node,
                                  param_attr=attr)

    def Transpose(self, node):
J
jiangjiajun 已提交
328 329
        input = self.graph.get_node(node.layer.input[0], copy=True)
        perm = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
330
        assert perm.layer_type == "Const", "Perm of transpose OP should be Const"
331
        del self.weights[perm.layer_name.replace('/', '_')]
J
jiangjiajun 已提交
332 333 334
        perm.fluid_code.clear()
        perm = perm.value.tolist()

J
jiangjiajun 已提交
335
        if perm == [0, 3, 1, 2] and input.data_format == "NHWC":
336 337 338 339 340
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
341 342 343
            node.tf_data_format = "NCHW"
            self.graph.data_format_propagation(node)
        elif perm == [0, 2, 3, 1] and input.tf_data_format == "NCHW":
344 345 346 347 348
            input_name = input.layer_name
            if hasattr(input, "index"):
                input_name = input_name + "[{}]".format(input.index)
            node.fluid_code.add_layer("{} = {}").format(node.layer_name,
                                                        input_name)
J
jiangjiajun 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
            node.tf_data_format = "NHWC"
            self.graph.data_format_propagation(node)
        elif len(input.out_shapes[0]) > 4:
            tf_data_format = list(input.tf_data_format)
            pd_data_format = list(input.pd_data_format)
            new_perm = [i for i in range(len(perm))]
            for i in range(len(perm)):
                char0 = tf_data_format[i]
                char1 = tf_data_format[perm[i]]
                index0 = pd_data_format.index(char0)
                index1 = pd_data_format.index(char1)
                new_perm[index0] = index1
            node.tf_data_format = [tf_data_format[i] for i in perm]
            node.pd_data_format = [pd_data_format[i] for i in perm]
            attr = {'perm': new_perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        elif len(node.out_shapes[0]) != 4:
            attr = {'perm': perm}
            node.fluid_code.add_layer("transpose",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            raise Exception("Unexpected situation happend in Transpose OP")
J
jiangjiajun 已提交
376

J
jiangjiajun 已提交
377 378
    def MaxPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
379

J
jiangjiajun 已提交
380
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
381 382 383
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
384 385 386 387
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
J
jiangjiajun 已提交
388
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
389

J
jiangjiajun 已提交
390
        if not channel_first:
J
jiangjiajun 已提交
391 392
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
393
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
394 395
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
396 397

        attr = {
J
jiangjiajun 已提交
398
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
399
            "pool_type": string("max"),
M
mamingjie-China 已提交
400
            "pool_padding": string(pad_mode),
J
jiangjiajun 已提交
401
            "pool_stride": strides[2:4]
J
jiangjiajun 已提交
402
        }
J
jiangjiajun 已提交
403 404 405 406
        node.fluid_code.add_layer("pool2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
407 408 409 410 411

    def Conv2D(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of Conv2D should be Const"
J
jiangjiajun 已提交
412
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
413

J
jiangjiajun 已提交
414
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
415 416
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
417
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
418 419 420
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
421 422 423 424 425
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
426 427 428

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
J
jiangjiajun 已提交
429 430 431 432 433

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
434 435
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
436

J
jiangjiajun 已提交
437 438 439 440 441 442
        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": k_size[3],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
443
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
444
            "padding": string(pad_mode)
J
jiangjiajun 已提交
445
        }
J
jiangjiajun 已提交
446 447 448 449
        node.fluid_code.add_layer("conv2d",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
450

J
jiangjiajun 已提交
451 452 453 454 455 456 457 458 459 460 461 462
    def BiasAdd(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        bias = self.graph.get_node(node.layer.input[1], copy=True)
        axis = -1
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = 1
        inputs = {"x": input, "y": bias}
        attr = {"axis": axis}
        node.fluid_code.add_layer("elementwise_add",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
463 464 465 466 467 468 469

    def FusedBatchNorm(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        gamma = self.graph.get_node(node.layer.input[1], copy=True)
        beta = self.graph.get_node(node.layer.input[2], copy=True)
        moving_mean = self.graph.get_node(node.layer.input[3], copy=True)
        moving_var = self.graph.get_node(node.layer.input[4], copy=True)
J
jiangjiajun 已提交
470 471
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
472 473 474 475 476

        assert gamma.layer_type == "Const"
        assert beta.layer_type == "Const"
        assert moving_mean.layer_type == "Const"
        assert moving_var.layer_type == "Const"
J
jiangjiajun 已提交
477 478 479 480
        self.add_omit_nodes(gamma.layer_name, node.layer_name)
        self.add_omit_nodes(beta.layer_name, node.layer_name)
        self.add_omit_nodes(moving_mean.layer_name, node.layer_name)
        self.add_omit_nodes(moving_var.layer_name, node.layer_name)
J
jiangjiajun 已提交
481 482
        if channel_first:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
483

J
jiangjiajun 已提交
484 485 486 487 488 489 490 491 492 493
        attr = {
            "epsilon": node.get_attr("epsilon"),
            "param_attr": string(gamma.layer_name),
            "bias_attr": string(beta.layer_name),
            "moving_mean_name": string(moving_mean.layer_name),
            "moving_variance_name": string(moving_var.layer_name),
            "is_test": True
        }

        node.fluid_code.add_layer("batch_norm",
J
jiangjiajun 已提交
494
                                  inputs=input,
J
jiangjiajun 已提交
495 496 497
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun@baidu.com 已提交
498 499 500
    def FusedBatchNormV3(self, node):
        return self.FusedBatchNorm(node)

J
jiangjiajun 已提交
501 502 503 504
    def DepthwiseConv2dNative(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
        assert kernel.layer_type == "Const", "Kernel of DepthwiseConv2DNative should be Const"
J
jiangjiajun 已提交
505
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
J
jiangjiajun 已提交
506

J
jiangjiajun 已提交
507
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
508 509
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
J
jiangjiajun 已提交
510
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
511 512 513
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
514 515 516 517 518
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"
J
jiangjiajun 已提交
519 520 521

        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (2, 3, 0, 1))
J
jiangjiajun 已提交
522 523 524 525 526

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
527 528
        else:
            self.data_format_propagation(node)
J
jiangjiajun 已提交
529 530 531 532 533 534 535 536

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
            "num_filters": in_shape[1],
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
            "dilation": dilations[2:4],
J
jiangjiajun 已提交
537
            "groups": k_size[3] * in_shape[1],
J
jiangjiajun 已提交
538
            "use_cudnn": False,
M
mamingjie-China 已提交
539
            "padding": string(pad_mode)
J
jiangjiajun 已提交
540
        }
J
jiangjiajun 已提交
541
        node.fluid_code.add_layer("conv2d",
J
jiangjiajun 已提交
542
                                  inputs=input,
J
jiangjiajun 已提交
543 544
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
545

J
jiangjiajun 已提交
546 547 548
    def Reshape(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        param = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
549
        is_variable = False
J
jiangjiajun 已提交
550 551
        if param.layer_type == "Const":
            attr = {"shape": param.value.tolist()}
J
jiangjiajun 已提交
552
            self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
553 554
        else:
            # Here is a trick method to solove tensor parameter in tensorflow
J
jiangjiajun 已提交
555 556 557
            shape = self.decoder.infer_shape_tensor(param, node.out_shapes[0])
            if shape.count(-1) <= 1:
                attr = {"shape": shape}
J
jiangjiajun 已提交
558 559 560 561 562
                self.add_omit_nodes(param.layer_name, node.layer_name)
            elif shape.count(-1) == 2 and shape[0] == -1:
                shape[0] = 0
                attr = {"shape": shape}
                self.add_omit_nodes(param.layer_name, node.layer_name)
J
jiangjiajun 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
            else:
                assert len(param.out_shapes[0]
                           ) == 1, "Unexpected situation of shape parameter"
                attr = {"shape": [-1]}
                node.fluid_code.add_layer("reshape",
                                          inputs=param,
                                          output="shape_param",
                                          param_attr=attr)
                attr = {"num_or_sections": param.out_shapes[0][0], "dim": 0}
                node.fluid_code.add_layer("split",
                                          inputs="shape_param",
                                          output=node,
                                          param_attr=attr)
                new_param = "["
                for i in range(param.out_shapes[0][0]):
                    new_param += (node.layer_name + "[{}]".format(i) + ", ")
                new_param = new_param.strip(", ") + "]"
                attr = {"shape": new_param}
J
jiangjiajun 已提交
581 582 583 584 585
                is_variable = True

        # to change [192, -1]->[-1, 192], allways put -1 in the first dimension
        # optimization for Paddle-Lite
        in_shape = input.out_shapes[0]
J
fix bug  
jiangjiajun 已提交
586
        if not is_variable and in_shape.count(-1) < 1:
J
jiangjiajun 已提交
587 588 589 590 591 592 593 594 595 596 597 598
            total_size = 1
            for i in range(len(in_shape)):
                total_size *= in_shape[i]
            for i in range(len(attr["shape"])):
                if attr["shape"][i] == 0:
                    attr["shape"][i] = in_shape[i]
                if attr["shape"][i] != -1:
                    total_size /= attr["shape"][i]
            if attr["shape"].count(-1) > 0:
                index = attr["shape"].index(-1)
                attr["shape"][index] = int(total_size)
                attr["shape"][0] = -1
599 600 601 602 603 604 605 606 607 608 609 610 611 612

        if len(input.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
            if len(attr["shape"]) < 3:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                return

J
jiangjiajun 已提交
613
        if len(attr["shape"]) == 4 and node.tf_data_format == "NHWC":
J
jiangjiajun 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
            input_shape = self.decoder.infer_tensor(input).shape
            if input_shape[1] == attr["shape"][1]:
                attr["shape"] = [attr["shape"][i] for i in [0, 3, 1, 2]]
            else:
                perm = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs=input,
                                          output=node,
                                          param_attr=perm)
                node.fluid_code.add_layer("reshape",
                                          inputs=node,
                                          output=node,
                                          param_attr=attr)
                perm = {"perm": [0, 3, 1, 2]}
                node.fluid_code.add_layer("transpose",
                                          inputs=node,
                                          output=node,
                                          param_attr=perm)
                return
J
jiangjiajun 已提交
633 634 635
        if len(attr["shape"]) == 5:
            attr["shape"] = [attr["shape"][i] for i in [0, 1, 4, 2, 3]]

J
jiangjiajun 已提交
636 637 638 639 640 641 642
        node.fluid_code.add_layer("reshape",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def AvgPool(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
643

J
jiangjiajun 已提交
644
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
645 646 647
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape

J
jiangjiajun 已提交
648 649 650 651 652 653 654 655 656
        k_size = node.get_attr("ksize")
        strides = node.get_attr("strides")
        data_format = node.get_attr("data_format").decode()
        pad_mode = node.get_attr("padding").decode()
        channel_first = data_format == "NCHW"

        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
657
            k_size = [k_size[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
658 659
        else:
            self.graph.data_format_propagation(node)
J
jiangjiajun 已提交
660 661

        attr = {
J
jiangjiajun 已提交
662
            "pool_size": k_size[2:4],
J
jiangjiajun 已提交
663
            "pool_type": string("avg"),
M
mamingjie-China 已提交
664 665
            "pool_stride": strides[2:4],
            "pool_padding": string(pad_mode)
J
jiangjiajun 已提交
666 667
        }
        node.fluid_code.add_layer("pool2d",
J
jiangjiajun 已提交
668
                                  inputs=input,
J
jiangjiajun 已提交
669 670 671
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
672 673 674 675 676 677
    def SplitV(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        num_sections = self.graph.get_node(node.layer.input[1], copy=True)
        dim = self.graph.get_node(node.layer.input[2], copy=True)
        assert num_sections.layer_type == "Const"
        assert dim.layer_type == "Const"
J
jiangjiajun 已提交
678 679
        self.add_omit_nodes(num_sections.layer_name, node.layer_name)
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
680 681 682
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)
J
jiangjiajun 已提交
683 684 685 686 687 688 689 690
        attr = {
            "num_or_sections": num_sections.value.tolist(),
            "dim": dim.value
        }
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
691 692

    def ConcatV2(self, node):
J
jiangjiajun 已提交
693 694 695 696
        inputs = [
            self.graph.get_node(name, copy=True)
            for name in node.layer.input[:-1]
        ]
J
jiangjiajun 已提交
697 698
        axis = self.graph.get_node(node.layer.input[-1], copy=True)
        assert axis.layer_type == "Const"
J
jiangjiajun 已提交
699
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
700 701 702 703 704
        axis = axis.value
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(inputs[0], axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
705 706 707 708
        node.fluid_code.add_layer("concat",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
709 710 711 712

    def Tile(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        expand_times = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
713
        self.add_omit_nodes(expand_times.layer_name, node.layer_name)
714 715 716 717
        if expand_times.layer_type == "Const":
            expand_times = expand_times.value.tolist()
        else:
            expand_times = self.decoder.infer_shape_tensor(expand_times)
J
jiangjiajun 已提交
718 719 720
        if input.tf_data_format == "NHWC":
            if len(input.out_shapes[0]) == 4:
                expand_times = [expand_times[i] for i in [0, 3, 1, 2]]
J
Jason 已提交
721
            elif len(input.out_shapes[0]) == 3:
J
jiangjiajun 已提交
722
                expand_times = [expand_times[i] for i in [2, 0, 1]]
723 724 725 726
        for i in range(len(expand_times)):
            if expand_times[i] < 0:
                expand_times[i] = 1

J
jiangjiajun 已提交
727
        attr = {"expand_times": expand_times}
J
jiangjiajun 已提交
728 729 730 731
        node.fluid_code.add_layer("expand",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
732 733

    def Pack(self, node):
J
jiangjiajun 已提交
734 735 736
        inputs = [
            self.graph.get_node(name, copy=True) for name in node.layer.input
        ]
J
jiangjiajun 已提交
737 738 739 740 741 742 743 744 745 746 747 748
        axis = node.get_attr("axis")
        if inputs[0].tf_data_format == "NHWC" and len(
                inputs[0].out_shapes[0]) == 4:
            tf_data_format = list(inputs[0].tf_data_format)
            tf_data_format.insert(axis, str(len(tf_data_format)))
            axis = nhwc_dim_to_nchw(inputs[0], axis)
            pd_data_format = list(inputs[0].pd_data_format)
            pd_data_format.insert(axis, str(len(pd_data_format)))
            node.tf_data_format = "".join(tf_data_format)
            node.pd_data_format = "".join(pd_data_format)

        attr = {"axis": axis}
J
jiangjiajun 已提交
749 750 751
        node.fluid_code.add_layer("stack",
                                  inputs=inputs,
                                  output=node,
J
jiangjiajun 已提交
752
                                  param_attr=attr)
J
jiangjiajun 已提交
753 754 755

    def Pad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
J
jiangjiajun 已提交
756
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
757
        assert paddings.layer_type == "Const", "Padding should be Const"
J
jiangjiajun 已提交
758
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
J
jiangjiajun 已提交
759 760 761
        paddings = paddings.value.flatten().tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]
J
jiangjiajun 已提交
762 763 764 765 766 767

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
J
jiangjiajun 已提交
768
        attr = {"paddings": paddings}
J
jiangjiajun 已提交
769
        node.fluid_code.add_layer(pad_op,
J
jiangjiajun 已提交
770 771 772
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
773

J
jiangjiajun 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    def MirrorPad(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        paddings = self.graph.get_node(node.layer.input[1], copy=True)
        assert paddings.layer_type == "Const", "Padding should be Const"
        self.add_omit_nodes(paddings.layer_name, node.layer_name)
        paddings = paddings.value.flatten().tolist()
        mode = node.get_attr("mode").decode()
        assert mode == "REFLECT", "Only support 'REFLECT` mode in MirrorPad"
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            paddings = [paddings[i] for i in [0, 1, 6, 7, 2, 3, 4, 5]]

        pad_op = "pad"
        if len(input.out_shapes[0]) == 4:
            if paddings[0] + paddings[1] + paddings[2] + paddings[3] == 0:
                paddings = paddings[4:]
                pad_op = "pad2d"
        attr = {"paddings": paddings, "mode": string("reflect")}
        node.fluid_code.add_layer(pad_op,
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
796 797 798 799
    def Range(self, node):
        start = self.graph.get_node(node.layer.input[0], copy=True)
        limit = self.graph.get_node(node.layer.input[1], copy=True)
        delta = self.graph.get_node(node.layer.input[2], copy=True)
M
mamingjie-China 已提交
800 801 802
        self.add_omit_nodes(start.layer_name, node.layer_name)
        self.add_omit_nodes(limit.layer_name, node.layer_name)
        self.add_omit_nodes(delta.layer_name, node.layer_name)
J
jiangjiajun 已提交
803 804
        if start.layer_type == "Const":
            start = start.value
805 806
        else:
            start = self.decoder.infer_tensor(start)
J
jiangjiajun 已提交
807 808
        if limit.layer_type == "Const":
            limit = limit.value
809 810
        else:
            limit = self.decoder.infer_tensor(limit)
J
jiangjiajun 已提交
811 812
        if delta.layer_type == "Const":
            delta = delta.value
813 814 815
        else:
            delta = self.decoder.infer_tensor(delta)

J
jiangjiajun 已提交
816
        inputs = {"start": start, "end": limit, "step": delta}
J
jiangjiajun 已提交
817
        attr = {"dtype": string(node.dtype)}
818 819 820 821
        node.fluid_code.add_layer("range",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
J
jiangjiajun 已提交
822 823 824 825 826

    def Mean(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
J
jiangjiajun 已提交
827
        dims = reduce_idx.value.tolist()
J
jiangjiajun 已提交
828
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
829 830 831 832 833 834

        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(dims)):
                dims[i] = nhwc_dim_to_nchw(input, dims[i])

        attr = {"dim": dims, "keep_dim": keep_dims}
J
jiangjiajun 已提交
835 836 837 838 839 840 841 842 843 844 845
        node.fluid_code.add_layer("reduce_mean",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def MatMul(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        transpose_a = node.get_attr('transpose_a')
        transpose_b = node.get_attr('transpose_b')
        inputs = {"x": x, "y": y}
J
jiangjiajun 已提交
846 847 848 849 850 851 852 853 854 855
        # fix paddle shape infer problem
        # should be removed after paddle 1.6
        if x.out_shapes[0][-1] < 0 and y.out_shapes[0][0] > 0:
            shape = x.out_shapes[0]
            shape[-1] = y.out_shapes[0][0]
            attr = {"shape": shape}
            node.fluid_code.add_layer("reshape",
                                      inputs=x,
                                      output=x,
                                      param_attr=attr)
J
jiangjiajun 已提交
856 857 858 859 860 861 862 863 864 865
        attr = {"transpose_x": transpose_a, "transpose_y": transpose_b}
        node.fluid_code.add_layer("matmul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=attr)

    def ArgMax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = self.graph.get_node(node.layer.input[1], copy=True)
        assert axis.layer_type == "Const", "ArgMax only support Const parameter"
J
jiangjiajun 已提交
866
        self.add_omit_nodes(axis.layer_name, node.layer_name)
J
jiangjiajun 已提交
867 868 869 870
        axis = axis.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
J
jiangjiajun 已提交
871 872 873 874 875 876 877 878 879 880 881 882 883
        node.fluid_code.add_layer("argmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def StridedSlice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        end = self.graph.get_node(node.layer.input[2], copy=True)
        strides = self.graph.get_node(node.layer.input[3], copy=True)
        assert begin.layer_type == "Const"
        assert end.layer_type == "Const"
        assert strides.layer_type == "Const"
J
jiangjiajun 已提交
884 885 886
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(end.layer_name, node.layer_name)
        self.add_omit_nodes(strides.layer_name, node.layer_name)
J
jiangjiajun 已提交
887 888 889
        strides = strides.value.tolist()
        assert len(set(strides)) == 1 and strides[0] == 1

J
jiangjiajun 已提交
890 891 892 893 894 895
        begin = begin.value.tolist()
        end = end.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            begin = [begin[i] for i in [0, 3, 1, 2]]
            end = [end[i] for i in [0, 3, 1, 2]]

J
jiangjiajun 已提交
896 897 898 899 900 901 902 903 904
        for i in range(len(end)):
            if end[i] == 0:
                end[i] = 999999

        attr = {
            "axes": [i for i in range(len(strides))],
            "starts": begin,
            "ends": end
        }
J
jiangjiajun 已提交
905 906 907 908 909 910 911

        shrink_axis_mask = node.get_attr('shrink_axis_mask')
        squeeze_dims = list()
        for i in range(len(begin)):
            x = shrink_axis_mask >> i & 1
            if x == 1:
                squeeze_dims.append(i)
J
jiangjiajun 已提交
912 913 914 915
        node.fluid_code.add_layer("slice",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
916 917 918 919 920 921
        if shrink_axis_mask > 0 and len(input.out_shapes[0]) == 5:
            attr = {"axes": squeeze_dims}
            node.fluid_code.add_layer("squeeze",
                                      inputs=node,
                                      output=node,
                                      param_attr=attr)
922 923 924 925 926

    def Slice(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        begin = self.graph.get_node(node.layer.input[1], copy=True)
        size = self.graph.get_node(node.layer.input[2], copy=True)
J
jiangjiajun 已提交
927 928
        self.add_omit_nodes(begin.layer_name, node.layer_name)
        self.add_omit_nodes(size.layer_name, node.layer_name)
J
jiangjiajun 已提交
929 930 931 932 933 934 935 936
        if begin.layer_type == "Const":
            begin = begin.value.tolist()
        else:
            begin = self.decoder.infer_tensor(begin).tolist()
        if size.layer_type == "const":
            size = size.value.tolist()
        else:
            size = self.decoder.infer_tensor(size).tolist()
937

J
jiangjiajun 已提交
938 939 940 941
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            size = [size[i] for i in [0, 3, 1, 2]]
            begin = [begin[i] for i in [0, 3, 1, 2]]

942 943 944 945 946 947 948 949 950 951 952 953
        for i in range(len(size)):
            if size[i] < 0:
                size[i] = 99999999
            else:
                size[i] = size[i] + begin[i]

        attr = {
            "axes": [i for i in range(len(size))],
            "starts": begin,
            "ends": size
        }
        node.fluid_code.add_layer("slice",
J
jiangjiajun 已提交
954 955 956
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
957 958

    def Conv2DBackpropInput(self, node):
959
        out_shape = self.graph.get_node(node.layer.input[0], copy=True)
960
        kernel = self.graph.get_node(node.layer.input[1], copy=True)
961 962
        input = self.graph.get_node(node.layer.input[2], copy=True)

963
        assert kernel.layer_type == "Const", "Kernel of Conv2DBackpropInput should be Const"
964

J
jiangjiajun 已提交
965
        self.add_omit_nodes(kernel.layer_name, node.layer_name)
966 967
        self.add_omit_nodes(out_shape.layer_name, node.layer_name)

J
jiangjiajun 已提交
968 969 970 971 972 973
        if out_shape.layer_type == "Const":
            out_shape = out_shape.value.tolist()
        else:
            out_shape = self.decoder.infer_shape_tensor(out_shape,
                                                        node.out_shapes[0])

974
        in_shape = input.out_shapes[0]
J
jiangjiajun 已提交
975 976
        if in_shape.count(-1) > 2:
            in_shape = self.decoder.infer_tensor(input).shape
977
        k_size = kernel.out_shapes[0]
J
jiangjiajun 已提交
978 979 980
        if k_size.count(-1) > 2:
            k_size = self.decoder.infer_tensor(kernel).shape

J
jiangjiajun 已提交
981
        pad_mode = node.get_attr("padding").decode()
982 983 984 985
        strides = node.get_attr("strides")
        dilations = node.get_attr("dilations")
        data_format = node.get_attr("data_format").decode()
        channel_first = data_format == "NCHW"
986

J
jiangjiajun 已提交
987 988
        self.weights[kernel.layer_name.replace('/', '_')] = numpy.transpose(
            kernel.value, (3, 2, 0, 1))
989 990 991 992
        if not channel_first:
            in_shape = [in_shape[i] for i in [0, 3, 1, 2]]
            strides = [strides[i] for i in [0, 3, 1, 2]]
            dilations = [dilations[i] for i in [0, 3, 1, 2]]
J
jiangjiajun 已提交
993 994
        else:
            self.data_format_propagation(node)
995 996 997 998

        attr = {
            "bias_attr": False,
            "param_attr": string(kernel.layer_name),
M
mamingjie-China 已提交
999
            "num_filters": k_size[2],
1000 1001
            "filter_size": k_size[0:2],
            "stride": strides[2:4],
J
jiangjiajun 已提交
1002
            "dilation": dilations[2:4],
M
mamingjie-China 已提交
1003 1004
            "padding": string(pad_mode),
            "output_size": out_shape[1:3]
1005
        }
1006 1007 1008 1009
        node.fluid_code.add_layer("conv2d_transpose",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1010 1011 1012 1013 1014 1015

    def Max(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1016 1017 1018 1019 1020
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
        node.fluid_code.add_layer("reduce_max",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Sum(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        reduce_idx = self.graph.get_node(node.layer.input[1], copy=True)
        assert reduce_idx.layer_type == "Const", "Only support Const parameter[reduce_idx]"
        keep_dims = node.get_attr("keep_dims")
J
jiangjiajun 已提交
1031 1032 1033 1034 1035
        dim = reduce_idx.value.tolist()
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"dim": dim, "keep_dim": keep_dims}
1036 1037 1038 1039 1040
        node.fluid_code.add_layer("reduce_sum",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

J
jiangjiajun 已提交
1041 1042 1043 1044 1045 1046 1047 1048
    def Cast(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        dtype = node.dtype_map[node.get_attr('DstT')]
        attr = {"dtype": string(dtype)}
        node.fluid_code.add_layer("cast",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1049

J
jiangjiajun 已提交
1050 1051 1052
    def Split(self, node):
        dim = self.graph.get_node(node.layer.input[0], copy=True)
        input = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1053
        self.add_omit_nodes(dim.layer_name, node.layer_name)
J
jiangjiajun 已提交
1054
        num_split = node.get_attr('num_split')
J
jiangjiajun 已提交
1055 1056 1057 1058 1059
        dim = dim.value
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            dim = nhwc_dim_to_nchw(input, dim)

        attr = {"num_or_sections": num_split, "dim": dim}
J
jiangjiajun 已提交
1060 1061 1062 1063
        node.fluid_code.add_layer("split",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

    def Squeeze(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        squeeze_dims = node.get_attr('squeeze_dims')
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            for i in range(len(squeeze_dims)):
                squeeze_dims[i] = nhwc_dim_to_nchw(input, squeeze_dims[i])
        attr = {"axes": squeeze_dims}
        node.fluid_code.add_layer("squeeze",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def Softmax(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        axis = node.get_attr("axis")
J
jiangjiajun 已提交
1080 1081
        if axis is None:
            axis = -1 + len(input.out_shapes[0])
J
jiangjiajun 已提交
1082 1083 1084 1085 1086 1087 1088
        if input.tf_data_format == "NHWC" and len(input.out_shapes[0]) == 4:
            axis = nhwc_dim_to_nchw(input, axis)
        attr = {"axis": axis}
        node.fluid_code.add_layer("softmax",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
J
jiangjiajun 已提交
1089

1090 1091 1092
    def ResizeNearestNeighbor(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1093
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {"align_corners": align_corners, "out_shape": resize_shape}
        node.fluid_code.add_layer("resize_nearest",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)

    def ResizeBilinear(self, node):
        input = self.graph.get_node(node.layer.input[0], copy=True)
        resize_shape = self.graph.get_node(node.layer.input[1], copy=True)
J
jiangjiajun 已提交
1109
        self.add_omit_nodes(resize_shape.layer_name, node.layer_name)
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        if resize_shape.layer_type == "Const":
            resize_shape = resize_shape.value.tolist()
        else:
            resize_shape = self.decoder.infer_shape_tensor(
                resize_shape, node.out_shapes[0])
        align_corners = node.get_attr("align_corners")
        attr = {
            "align_corners": align_corners,
            "out_shape": resize_shape,
            "align_mode": 1
        }
        node.fluid_code.add_layer("resize_bilinear",
                                  inputs=input,
                                  output=node,
                                  param_attr=attr)
1125 1126

    def GreaterEqual(self, node):
J
jiangjiajun 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("greater_equal",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)

    def RandomUniform(self, node):
        shape = self.graph.get_node(node.layer.input[0], copy=True)
        self.add_omit_nodes(shape.layer_name, node.layer_name)
        if shape.layer_type == "Const":
            shape = shape.value.tolist()
        else:
            shape = self.decoder.infer_shape_tensor(shape)
        if len(shape) == 4 and node.tf_data_format == "NHWC":
            shape = [shape[i] for i in [0, 3, 1, 2]]
        attr = {"shape": shape, "min": 0.0, "max": 0.9999}
        if shape[0] < 0:
            input = self.batch_node
            node.fluid_code.add_layer("uniform_random_batch_size_like",
                                      inputs=input,
                                      output=node,
                                      param_attr=attr)
        else:
            node.fluid_code.add_layer("uniform_random",
                                      inputs=None,
                                      output=node,
                                      param_attr=attr)
J
jiangjiajun 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

    def SquaredDifference(self, node):
        x = self.graph.get_node(node.layer.input[0], copy=True)
        y = self.graph.get_node(node.layer.input[1], copy=True)
        inputs = {"x": x, "y": y}
        node.fluid_code.add_layer("elementwise_sub",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)
        inputs = {"x": node, "y": node}
        node.fluid_code.add_layer("elementwise_mul",
                                  inputs=inputs,
                                  output=node,
                                  param_attr=None)