gen_unet.py 3.9 KB
Newer Older
M
Macrobull 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 22 11:19:45 2019

@author: Macrobull

Not all ops in this file are supported by both Pytorch and ONNX
This only demostrates the conversion/validation workflow from Pytorch to ONNX to Paddle fluid

"""

from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F

from onnx2fluid.torch_export_helper import export_onnx_with_validation


# from https://github.com/milesial/Pytorch-UNet
class double_conv(nn.Module):
    '''(conv => BN => ReLU) * 2'''

    def __init__(self, in_ch, out_ch):
        super(double_conv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1),
            nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True))

    def forward(self, x):
        x = self.conv(x)
        return x


class inconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(inconv, self).__init__()
        self.conv = double_conv(in_ch, out_ch)

    def forward(self, x):
        x = self.conv(x)
        return x


class down(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(down, self).__init__()
        self.mpconv = nn.Sequential(nn.MaxPool2d(2), double_conv(in_ch, out_ch))

    def forward(self, x):
        x = self.mpconv(x)
        return x


class up(nn.Module):
    def __init__(self, in_ch, out_ch, bilinear=True):
        super(up, self).__init__()

        #  would be a nice idea if the upsampling could be learned too,
        #  but my machine do not have enough memory to handle all those weights
        if bilinear:
            self.up = nn.Upsample(
                scale_factor=2, mode='bilinear')  #, align_corners=True)
        else:
            self.up = nn.ConvTranspose2d(in_ch // 2, in_ch // 2, 2, stride=2)

        self.conv = double_conv(in_ch, out_ch)

    def forward(self, x1, x2):
        x1 = self.up(x1)

        # input is CHW
        if hasattr(self, 'diffY'):
            diffY = self.diffY
            diffX = self.diffX
        else:
            diffY = self.diffY = x2.size()[2] - x1.size()[2]
            diffX = self.diffX = x2.size()[3] - x1.size()[3]

        x1 = F.pad(
            x1,
            (diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2))

        # for padding issues, see
        # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
        # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd

        x = torch.cat([x2, x1], dim=1)
        x = self.conv(x)
        return x


class outconv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(outconv, self).__init__()
        self.conv = nn.Conv2d(in_ch, out_ch, 1)

    def forward(self, x):
        x = self.conv(x)
        return x


class UNet(nn.Module):
    def __init__(self, n_channels, n_classes):
        super(UNet, self).__init__()
        self.inc = inconv(n_channels, 64)
        self.down1 = down(64, 128)
        self.down2 = down(128, 256)
        self.down3 = down(256, 512)
        self.down4 = down(512, 512)
        self.up1 = up(1024, 256)
        self.up2 = up(512, 128)
        self.up3 = up(256, 64)
        self.up4 = up(128, 64)
        self.outc = outconv(64, n_classes)

    def forward(self, x):
        x1 = self.inc(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        x = self.outc(x)
        return F.sigmoid(x)


model = UNet(3, 80)
model.eval()
xb = torch.rand((1, 3, 512, 512))
yp = model(xb)
export_onnx_with_validation(
    model, (xb, ),
    'sample_unet', ['image'], ['pred'],
    verbose=True,
    training=False)