onnx_decoder.py 20.3 KB
Newer Older
C
update  
channingss 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
from x2paddle.core.fluid_code import FluidCode
17
from x2paddle.decoder.onnx_shape_inference import SymbolicShapeInference
C
update  
channingss 已提交
18 19 20
from onnx.checker import ValidationError
from onnx.checker import check_model
from onnx.utils import polish_model
S
SunAhong1993 已提交
21
from onnx import helper, shape_inference
C
update  
channingss 已提交
22 23 24 25
from onnx.helper import get_attribute_value, make_attribute
from onnx.shape_inference import infer_shapes
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
from onnx.numpy_helper import to_array
C
channingss 已提交
26
from onnx import AttributeProto, TensorProto, GraphProto
C
update  
channingss 已提交
27 28
from collections import OrderedDict as Dict
import onnx
C
channingss 已提交
29
from onnx.helper import ValueInfoProto
C
update  
channingss 已提交
30 31
import numpy as np
from copy import deepcopy
C
channingss 已提交
32
import logging as _logging
C
channingss 已提交
33
import os
C
update  
channingss 已提交
34 35

default_op_domain = 'ai.onnx'
C
channingss 已提交
36
_logger = _logging.getLogger(__name__)
C
update  
channingss 已提交
37 38 39 40 41 42 43 44 45 46 47


class ONNXGraphNode(GraphNode):
    def __init__(self, layer, layer_name=None):
        if layer_name is None:
            super(ONNXGraphNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphNode, self).__init__(layer, layer_name)
        self.layer_type = layer.op_type
        self.fluid_code = FluidCode()
        self.attr_map = self.get_attr_map()
C
channingss 已提交
48
        self.out_shapes = list()
C
update  
channingss 已提交
49
        self.dtype = None
C
channingss 已提交
50
        self.which_child = {}
C
update  
channingss 已提交
51 52 53 54 55 56

    def get_attr_map(self):
        """
        convert ONNX node attributes to dict
        """
        return {
57
            attr.name: self.get_attribute_value(attr)
C
update  
channingss 已提交
58 59 60 61 62
            for attr in self.layer.attribute
        }

    @property
    def value(self):
C
channingss 已提交
63 64 65
        assert 'Constant' in self.layer_type, "Only Constant | ConstantOfShape node has value."
        if 'value' not in self.attr_map:
            return None
C
channingss 已提交
66
        return self.attr_map['value']
S
SunAhong1993 已提交
67 68 69 70 71 72
    
    @property
    def name(self):
        if hasattr(self, 'index'):
            return "{}_p{}".format(self.layer_name, self.index)
        return self.layer_name
C
update  
channingss 已提交
73

74
    def get_attribute_value(self, attr):
C
update  
channingss 已提交
75 76 77 78 79 80
        """
        get_attribute_value enhanced
        """
        if attr.type == onnx.AttributeProto.TENSOR:
            dtype = np.dtype(TENSOR_TYPE_TO_NP_TYPE[attr.t.data_type])
            data = attr.t.raw_data
81 82
            value = np.frombuffer(
                data, dtype=dtype, count=(len(data) // dtype.itemsize))
C
update  
channingss 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        elif attr.type == onnx.AttributeProto.STRING:
            value = attr.s
            value = value.decode() if isinstance(value, bytes) else value
        else:
            value = get_attribute_value(attr)
        return value

    def get_attr(self, name, default=None):
        """
        get_attribute_value from attr_map
        """
        if name not in self.attr_map:
            return default
        return self.attr_map[name]


class ONNXGraphDataNode(GraphNode):
    def __init__(self, layer, layer_name=None, is_global_input=False):
        if layer_name is None:
            super(ONNXGraphDataNode, self).__init__(layer, layer.name)
        else:
            super(ONNXGraphDataNode, self).__init__(layer, layer_name)
        if is_global_input:
            self.layer_type = 'place_holder'
        else:
            self.layer_type = 'create_parameter'
        self.layer_name = layer_name
        self.fluid_code = FluidCode()
        self.weight = None
        self.embeded_as = None
C
channingss 已提交
113
        self.which_child = {}
C
update  
channingss 已提交
114 115 116

    @property
    def out_shapes(self):
C
channingss 已提交
117 118 119 120 121 122 123 124 125 126
        if isinstance(self.layer, ValueInfoProto):
            values = self.layer.type.tensor_type.shape.dim
            out_shapes = list()
            out_shapes.append([dim.dim_value for dim in values])
            return out_shapes
        else:
            values = self.layer.dims
            out_shapes = list()
            out_shapes.append(values)
            return out_shapes
S
SunAhong1993 已提交
127 128 129 130
        
    @property
    def name(self):
        return self.layer_name
C
update  
channingss 已提交
131 132 133

    @property
    def dtype(self):
C
channingss 已提交
134 135 136 137 138 139
        if isinstance(self.layer, ValueInfoProto):
            dtype = self.layer.type.tensor_type.elem_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
        else:
            dtype = self.layer.data_type
            return TENSOR_TYPE_TO_NP_TYPE[dtype]
C
update  
channingss 已提交
140 141 142


class ONNXGraph(Graph):
C
channingss 已提交
143
    def __init__(self, onnx_model):
144 145
        super(ONNXGraph, self).__init__(onnx_model)
        self.fixed_input_shape = {}
C
update  
channingss 已提交
146 147
        self.initializer = {}
        self.place_holder_nodes = list()
148 149
        self.value_infos = {}
        self.graph = onnx_model.graph
C
update  
channingss 已提交
150
        self.get_place_holder_nodes()
151 152 153
        print("shape inferencing ...")
        self.graph = SymbolicShapeInference.infer_shapes(
            onnx_model, fixed_input_shape=self.fixed_input_shape)
S
SunAhong1993 已提交
154 155 156 157
        if self.graph is None:
            print('[WARNING] Shape inference by ONNX offical interface.')
            onnx_model = shape_inference.infer_shapes(onnx_model)
            self.graph = onnx_model.graph
158 159 160 161
        print("shape inferenced.")
        self.build()
        self.collect_value_infos()
        self.allocate_shapes()
S
SunAhong1993 已提交
162
        self.graph_name = "ONNXModel"
C
update  
channingss 已提交
163 164 165 166 167 168

    def get_inner_nodes(self):
        """
        generate inner node of ONNX model
        """
        inner_nodes = []
169
        if not isinstance(self.graph, onnx.GraphProto):
C
update  
channingss 已提交
170 171
            logger.error('graph is not a GraphProto instance')
            return
172
        for initializer in self.graph.initializer:
C
update  
channingss 已提交
173 174 175 176
            name = initializer.name
            inner_nodes.append(name)
        return inner_nodes

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
    def get_symbolic_shape(self, dims):
        shape = []
        for dim in dims:
            if dim.HasField('dim_param'):
                shape.append(dim.dim_param)
            else:
                shape.append(dim.dim_value)
        return shape

    def check_input_shape(self, vi):
        if vi.type.HasField('tensor_type'):
            for dim in vi.type.tensor_type.shape.dim:
                if dim.HasField(
                        'dim_param') and vi.name not in self.fixed_input_shape:
                    shape = self.get_symbolic_shape(
                        vi.type.tensor_type.shape.dim)
                    print(
                        "Unknown shape for input tensor[tensor name: '{}'] -> shape: {}, Please define shape of input here,\nNote:you can use visualization tools like Netron to check input shape."
                        .format(vi.name, shape))
                    right_shape_been_input = False
                    while not right_shape_been_input:
                        try:
                            shape = raw_input(
                                "Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
                            )
                        except:
                            shape = input(
                                "Shape of Input(e.g. -1,3,224,224), enter 'N' to skip: "
                            )
                        if shape.count("-1") > 1:
                            print("Only 1 dimension can be -1, type again:)")
                        else:
                            right_shape_been_input = True
                    if shape == 'N':
                        break
                    shape = [int(dim) for dim in shape.strip().split(',')]
                    assert shape.count(-1) <= 1, "Only one dimension can be -1"
                    self.fixed_input_shape[vi.name] = shape
                    break

C
update  
channingss 已提交
217 218 219 220 221
    def get_place_holder_nodes(self):
        """
        generate place_holder node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
222 223 224 225
        for ipt_vi in self.graph.input:
            if ipt_vi.name not in inner_nodes:
                self.check_input_shape(ipt_vi)
                self.place_holder_nodes.append(ipt_vi.name)
C
update  
channingss 已提交
226

C
channingss 已提交
227 228 229 230 231
    def get_output_nodes(self):
        """
        generate output_nodes node of ONNX model
        """
        inner_nodes = self.get_inner_nodes()
232
        output_nodes = [value.name for value in self.graph.output]
C
channingss 已提交
233 234 235 236
        for opt_data in output_nodes:
            if opt_data not in inner_nodes:
                self.output_nodes.append(opt_data)

C
update  
channingss 已提交
237 238 239 240 241 242 243 244 245 246 247 248
    def is_place_holder_nodes(self, layer):
        """
        return layer is or not place_holder node
        """
        if layer in self.place_holder_nodes:
            return True
        return False

    def build(self):
        """
        build topo_sort of ONNX model
        """
249
        for layer in self.graph.node:
C
channingss 已提交
250 251
            node = ONNXGraphNode(layer)
            self.node_map[layer.name] = node
C
update  
channingss 已提交
252

253
        for layer in self.graph.input:
C
update  
channingss 已提交
254 255 256 257 258 259
            if layer.name not in self.node_map:
                is_place_holder = self.is_place_holder_nodes(layer.name)
                self.node_map[layer.name] = ONNXGraphDataNode(
                    layer,
                    layer_name=layer.name,
                    is_global_input=is_place_holder)
C
channingss 已提交
260

C
update  
channingss 已提交
261
        #set data node's weight
262
        for initializer in self.graph.initializer:
C
channingss 已提交
263 264
            name = initializer.name
            weight = to_array(initializer)
C
update  
channingss 已提交
265 266 267 268
            if name in self.node_map:
                if isinstance(self.node_map[name], ONNXGraphDataNode):
                    self.node_map[name].weight = weight
                    self.node_map[name].embeded_as = []
C
channingss 已提交
269
            else:
270 271
                self.node_map[name] = ONNXGraphDataNode(
                    initializer, layer_name=name, is_global_input=False)
C
channingss 已提交
272 273
                self.node_map[name].weight = weight
                self.node_map[name].embeded_as = []
C
update  
channingss 已提交
274 275 276 277

        #generate connection between nodes for topo
        for layer_name, node in self.node_map.items():
            if isinstance(node, ONNXGraphNode):
278 279
                self.build_connection(layer_name, node)

C
channingss 已提交
280
        #generate topo
C
update  
channingss 已提交
281 282 283 284
        super(ONNXGraph, self).build()

        self.input_nodes = self.place_holder_nodes

285 286 287 288 289 290 291 292 293
    def build_connection(self, layer_name, node):
        """
        find connection for nodes
        """
        for idx, in_node in enumerate(node.layer.input):
            if in_node == '':
                continue
            if in_node not in self.node_map:
                flag = 0
294
                for nd in self.graph.node:
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
                    for idx, opt in enumerate(nd.output):
                        if opt == in_node:
                            self.connect(nd.name, layer_name)
                            flag = 1
                            node.which_child[nd.name] = idx
                            self.node_map[nd.name].index = 0
                            break
                    if flag == 1:
                        break
                if flag == 0:
                    raise Exception(
                        'input[{}] of node[{}] does not exist in node_map'.
                        format(in_node, layer_name))
            else:
                self.connect(in_node, layer_name)

C
channingss 已提交
311 312
    def get_input_node(self, node, idx=0, copy=False):
        if len(node.which_child) == 0:
C
channingss 已提交
313 314 315
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            return ipt_node

C
channingss 已提交
316 317 318 319 320
        else:
            ipt_node = super(ONNXGraph, self).get_node(node.inputs[idx], copy)
            if ipt_node.layer_name in node.which_child:
                ipt_node.index = node.which_child[ipt_node.layer_name]
            return ipt_node
S
SunAhong1993 已提交
321
        
C
update  
channingss 已提交
322

323
    def graph_weights(self):
C
update  
channingss 已提交
324 325 326 327
        """
        generator for weights
        """

328
        if not isinstance(self.graph, onnx.GraphProto):
C
update  
channingss 已提交
329 330 331
            logger.error('graph is not a GraphProto instance')
            return

332
        for initializer in self.graph.initializer:
C
update  
channingss 已提交
333 334 335 336
            name = initializer.name
            weight = to_array(initializer)
            yield name, weight

337
    def collect_value_infos(self):
C
channingss 已提交
338 339 340
        """
        collect value/type info for an ONNX model
        """
341
        assert isinstance(self.graph,
C
channingss 已提交
342 343
                          onnx.GraphProto), 'model is not a ModelProto instance'

344 345
        for item in self.graph.value_info:
            self.value_infos[item.name] = {
C
channingss 已提交
346 347 348 349 350 351
                'dtype':
                TENSOR_TYPE_TO_NP_TYPE[item.type.tensor_type.elem_type],
                'shape':
                [dim.dim_value for dim in item.type.tensor_type.shape.dim],
                'external': False
            }
352 353 354 355 356 357 358 359 360 361 362 363 364

    def allocate_shapes(self):
        """
        run shape inference
        """
        for layer in self.graph.node:
            node = self.node_map[layer.name]
            for opt in layer.output:
                if opt in self.value_infos:
                    value_info = self.value_infos[opt]
                    #if len(value_info['shape']) == 0 or value_info[
                    #        'dtype'] is None or 0 in value_info['shape']:
                    #    #TODO add node shape inference
365 366 367 368 369
                    shape = value_info['shape']
                    for idx in range(len(shape)):
                        if shape[idx] == 0:
                            shape[idx] = -1
                    node.out_shapes.append(shape)
370 371 372
                    node.dtype = value_info['dtype']
                else:
                    node.out_shapes.append([])
C
channingss 已提交
373

C
update  
channingss 已提交
374 375

class ONNXDecoder(object):
C
channingss 已提交
376
    def __init__(self, onnx_model):
377
        onnx_model = onnx.load(onnx_model)
C
update  
channingss 已提交
378
        print('model ir_version: {}, op version: {}'.format(
379 380 381 382 383 384 385 386 387 388
            onnx_model.ir_version, onnx_model.opset_import[0].version))
        self.op_set = onnx_model.opset_import[0].version

        check_model(onnx_model)

        onnx_model = self.optimize_model_skip_op(onnx_model)
        onnx_model = self.optimize_model_strip_initializer(onnx_model)
        onnx_model = self.optimize_node_name(onnx_model)
        self.graph = ONNXGraph(onnx_model)
        #self.onnx_model = onnx_model
C
update  
channingss 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430

    def build_value_refs(self, nodes):
        """
        build op reference of inputs and outputs
        """
        input_refs = Dict()
        output_refs = Dict()
        for idx, node in enumerate(nodes):
            for val_name in node.input:
                input_refs.setdefault(val_name, set()).add(idx)
            for val_name in node.output:
                output_refs.setdefault(val_name, set()).add(idx)
        return input_refs, output_refs

    def skip_node_forward(self, nodes, src_output_name, dst_input_name,
                          input_refs):
        """
        skip nodes between src_output_name -> dst_input_name and connect this pair
        """
        processed = 0
        for next_idx in input_refs[src_output_name]:
            next_node = nodes[next_idx]
            for val_idx, next_input_name in enumerate(next_node.input):
                if next_input_name == src_output_name:
                    next_node.input[val_idx] = dst_input_name
                    processed += 1
        return processed

    def skip_node_backward(self, nodes, src_input_name, dst_output_name,
                           output_refs):
        """
        skip nodes between dst_output_name -> src_input_name and connect this pair
        """
        processed = 0
        for prev_idx in output_refs[src_input_name]:
            prev_node = nodes[prev_idx]
            for val_idx, prev_output_name in enumerate(prev_node.output):
                if prev_output_name == src_input_name:
                    prev_node.output[val_idx] = dst_output_name
                    processed += 1
        return processed

431
    def optimize_model_skip_op(self, model, op_list=None):
C
update  
channingss 已提交
432 433 434
        """
        skip ops can be bypassed for inference
        """
435
        nodes = model.graph.node
C
update  
channingss 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        if op_list is None:
            op_list = ['Dropout']
        input_refs, output_refs = self.build_value_refs(nodes)
        ret = type(model)()
        ret.CopyFrom(model)
        ret_nodes = ret.graph.node
        nodes_to_remove = []
        for node_idx, node in enumerate(nodes):
            if not (node.domain == default_op_domain or node.domain == ''):
                continue
            op_type = node.op_type
            if not (op_type in op_list):
                continue
            if op_type in ['Dropout']:
                input_name = node.input[0]
                output_name = node.output[0]
            elif not (len(node.input) == 1 and len(node.output) == 1):
                print(
                    'currently only 1-input-1-output op supported, skip required %d: %s',
                    node_idx, node.op_type)
                continue
            else:
                input_name = node.input[0]
                output_name = node.output[0]

            if output_name in input_refs:
                processed = self.skip_node_forward(ret_nodes, output_name,
                                                   input_name, input_refs)
            elif input_name in output_refs:
                processed = self.skip_node_backward(ret_nodes, input_name,
                                                    output_name, output_refs)
            else:
                processed = -1
            if processed > 0:
                nodes_to_remove.append(node_idx)
C
channingss 已提交
471 472 473 474 475
                for value_info in ret.graph.value_info:
                    for output in node.output:
                        if value_info.name == output:
                            ret.graph.value_info.remove(value_info)

C
update  
channingss 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
                print('skip op {}: {} -> {} -> {}'.format(
                    node_idx, input_name, node.op_type, output_name))
            elif processed == 0:
                print('weird, no node processed')
            else:
                print('standalone op {}: {} -> {} -> {} not skipped'.format(
                    node_idx, input_name, node.op_type, output_name))

        nodes_to_remove.sort(reverse=True)
        for node_idx in nodes_to_remove:
            ret_nodes.pop(node_idx)
        return ret

    def optimize_model_strip_initializer(self, model, keep_input_only=True):
        """
        strip weights for inference
        """
        nodes = model.graph.node
        input_refs, output_refs = self.build_value_refs(nodes)
        out_names = [val.name for val in model.graph.output]

        ret = type(model)()
        ret.CopyFrom(model)
        # strip initializers
        ret.graph.ClearField('initializer')
        ret_initializers = ret.graph.initializer
        for initializer in model.graph.initializer:
            name = initializer.name
            if name in input_refs:
                ret_initializers.add().CopyFrom(initializer)
            elif not keep_input_only and name in output_refs:
                ret_initializers.add().CopyFrom(initializer)
            else:
                dtype = TENSOR_TYPE_TO_NP_TYPE[initializer.data_type]

        # strip inputs
        ret.graph.ClearField('input')
        ret_inputs = ret.graph.input
        for item in model.graph.input:
            name = item.name
            if name in input_refs or name in out_names:
                ret_inputs.add().CopyFrom(item)
        return ret

    def make_variable_name(self, name):
        """
        make a valid code name for ParamAttr
        """
        if name == '':
            raise ValueError('name should not be empty')
C
channingss 已提交
526
        for s in ' .*?\\/-:':
C
update  
channingss 已提交
527
            name = name.replace(s, '_')
528 529
        return 'x2paddle_' + name

530
    def optimize_node_name(self, model):
C
update  
channingss 已提交
531 532 533
        """
        standardize variable name for paddle's code
        """
534
        graph = model.graph
C
update  
channingss 已提交
535 536 537 538 539 540 541 542 543
        for initializer in graph.initializer:
            initializer.name = self.make_variable_name(initializer.name)
        for ipt in graph.input:
            ipt.name = self.make_variable_name(ipt.name)
        for output in graph.output:
            output.name = self.make_variable_name(output.name)
        for item in graph.value_info:
            item.name = self.make_variable_name(item.name)
        for node in graph.node:
C
channingss 已提交
544
            node.name = node.output[0]
C
update  
channingss 已提交
545 546
            node.name = self.make_variable_name(node.name)
            for i in range(len(node.input)):
547 548 549 550
                if node.input[i] == '':
                    continue
                else:
                    node.input[i] = self.make_variable_name(node.input[i])
C
update  
channingss 已提交
551 552
            for i in range(len(node.output)):
                node.output[i] = self.make_variable_name(node.output[i])
553
        return model