tf_decoder.py 18.6 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from x2paddle.core.graph import GraphNode, Graph
J
jiangjiajun 已提交
16 17
from x2paddle.core.fluid_code import FluidCode
from tensorflow.python.framework import tensor_util
J
jiangjiajun 已提交
18
from tensorflow.core.framework import attr_value_pb2
J
jiangjiajun 已提交
19
import tensorflow as tf
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21
import numpy
J
jiangjiajun 已提交
22
import sys
J
jiangjiajun 已提交
23

24

J
jiangjiajun 已提交
25
class TFGraphNode(GraphNode):
J
jiangjiajun 已提交
26
    def __init__(self, layer, layer_name=None, data_format="NHWC"):
J
jiangjiajun 已提交
27
        if layer_name is None:
J
jiangjiajun 已提交
28 29 30
            super(TFGraphNode, self).__init__(
                layer,
                layer.name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
31
        else:
J
jiangjiajun 已提交
32 33 34
            super(TFGraphNode, self).__init__(
                layer,
                layer_name.replace('/', '_').replace('-', '_').replace('^', ''))
J
jiangjiajun 已提交
35

J
jiangjiajun 已提交
36
        self.layer_type = layer.op
J
jiangjiajun 已提交
37 38
        self.tf_data_format = data_format
        self.pd_data_format = "NCHW"
J
jiangjiajun 已提交
39
        self.fluid_code = FluidCode()
J
jiangjiajun 已提交
40

J
jiangjiajun 已提交
41 42 43 44 45 46 47
        self.dtype_map = {
            1: "float32",
            3: "int32",
            4: "uint8",
            9: "int64",
            10: "bool"
        }
48 49 50

    @property
    def out_shapes(self):
M
mamingjie-China 已提交
51
        if self.layer_type == "OneShotIterator" or self.layer_type == "IteratorV2":
J
jiangjiajun@baidu.com 已提交
52 53 54
            values = self.layer.attr["output_shapes"].list.shape
        else:
            values = self.layer.attr["_output_shapes"].list.shape
55 56 57 58 59 60 61 62
        out_shapes = list()
        for value in values:
            shape = [dim.size for dim in value.dim]
            out_shapes.append(shape)
        return out_shapes

    @property
    def dtype(self):
J
jiangjiajun 已提交
63
        keys = ['dtype', 'T', 'DstT']
64 65 66 67
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
J
jiangjiajun@baidu.com 已提交
68 69
        if dtype == 0:
            dtype = self.layer.attr['output_types'].list.type[0]
70
        if dtype not in self.dtype_map:
M
mamingjie-China 已提交
71 72
            raise Exception("Dtype[{}] of node({}) not in dtype_map".format(
                dtype, self.layer.name))
73 74
        return self.dtype_map[dtype]

C
channingss 已提交
75 76 77 78 79 80 81 82 83
    def set_dtype(self, dtype):
        dtype_idx = 0
        for k, v in self.dtype_map.items():
            if v == dtype:
                dtype_idx = k
        if dtype_idx == 0:
            raise Exception("Cannot set dtype of node to '{}'".format(dtype))
        self.layer.attr['dtype'].type = dtype_idx

J
jiangjiajun 已提交
84 85 86 87 88 89 90 91 92
    @property
    def raw_dtype(self):
        keys = ['dtype', 'Tidx', 'T', 'DstT']
        for k in keys:
            dtype = self.layer.attr[k].type
            if dtype > 0:
                break
        return dtype

J
jiangjiajun 已提交
93 94 95 96 97 98 99 100
    @property
    def value(self):
        assert self.layer_type == "Const", "Only Const node has value."

        attr = self.layer.attr['value']
        field = getattr(attr, attr.WhichOneof('value'))
        return tensor_util.MakeNdarray(field)

J
jiangjiajun 已提交
101 102 103 104 105 106
    @property
    def name(self):
        if hasattr(self, 'index'):
            return self.layer_name + "_p{}".format(self.index)
        return self.layer_name

J
jiangjiajun 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def get_attr(self, name):
        if name not in self.layer.attr:
            return None
        attr = self.layer.attr[name]
        field = attr.WhichOneof('value')
        value = getattr(attr, field) if field else None

        if isinstance(value, attr_value_pb2.AttrValue.ListValue):
            result = list(value.ListFields()[0][1])
            for i in range(len(result)):
                if isinstance(result[i], int):
                    result[i] = int(result[i])
                try:
                    if isinstance(result[i], long):
                        result[i] = int(result[i])
                except:
                    pass
            return result
        else:
            return value

J
jiangjiajun 已提交
128 129

class TFGraph(Graph):
J
jiangjiajun 已提交
130
    def __init__(self, model, data_format="NHWC"):
J
jiangjiajun 已提交
131
        super(TFGraph, self).__init__(model)
J
jiangjiajun 已提交
132
        self.identity_map = dict()
M
mamingjie-China 已提交
133
        self.multi_out_ops = ['Split', 'SplitV', 'IteratorV2']
J
jiangjiajun 已提交
134
        self.tf_data_format = data_format
S
SunAhong1993 已提交
135
        self.graph_name = "TFModel"
J
jiangjiajun 已提交
136 137 138

    def build(self):
        for layer in self.model.node:
M
mamingjie-China 已提交
139 140
            if layer.op == 'Assert':
                continue
J
jiangjiajun 已提交
141
            self.node_map[layer.name.replace('/', '_').replace(
J
jiangjiajun 已提交
142 143
                '-', '_')] = TFGraphNode(
                    layer, data_format=self.tf_data_format)
J
jiangjiajun 已提交
144

J
jiangjiajun 已提交
145
        for layer_name, node in self.node_map.items():
M
mamingjie-China 已提交
146 147
            if node.layer_type == 'Const':
                continue
J
jiangjiajun 已提交
148
            for in_node in node.layer.input:
J
jiangjiajun 已提交
149 150
                in_node = in_node.replace('/', '_').replace('-', '_').replace(
                    '^', '')
J
jiangjiajun 已提交
151 152
                if in_node not in self.node_map:
                    if in_node.strip().split(':')[0] in self.node_map:
J
jiangjiajun 已提交
153
                        self.connect(in_node.strip().split(':')[0], layer_name)
J
jiangjiajun 已提交
154
                    else:
155 156 157
                        raise Exception(
                            'input[{}] of node[{}] does not exist in node_map'.
                            format(in_node, layer_name))
J
jiangjiajun 已提交
158 159 160
                else:
                    self.connect(in_node, layer_name)

161
        super(TFGraph, self).build()
J
jiangjiajun 已提交
162

M
mamingjie-China 已提交
163 164 165 166 167 168 169 170
        for layer in self.model.node:
            if layer.op == 'Assert':
                for ipt in layer.input:
                    ipt_name = ipt.replace('-', '_').replace('/', '_')
                    if ipt_name in self.output_nodes:
                        idx = self.output_nodes.index(ipt_name)
                        del self.output_nodes[idx]

J
jiangjiajun 已提交
171 172
        # tensorflow graph optimize
        self._remove_isolated_node()
J
jiangjiajun@baidu.com 已提交
173
        self._optimize_dialiation_conv()
J
jiangjiajun 已提交
174
        self._remove_identity_node()
J
jiangjiajun 已提交
175
        self._remove_cast_node()
J
jiangjiajun 已提交
176 177 178

    def get_node(self, node_name, copy=False):
        items = node_name.strip().split(':')
J
jiangjiajun 已提交
179
        items[0] = items[0].replace('/', '_').replace('-', '_')
J
jiangjiajun 已提交
180 181 182
        if items[0] in self.identity_map:
            items[0] = self.identity_map[items[0]]
        new_node_name = ":".join(items)
J
jiangjiajun 已提交
183
        node = super(TFGraph, self).get_node(new_node_name, copy)
J
jiangjiajun 已提交
184 185
        if node is None:
            return None
J
jiangjiajun 已提交
186 187 188
        if node.layer_type == "Switch":
            if hasattr(node, 'index'):
                del node.index
J
jiangjiajun 已提交
189 190 191
        if len(items) == 1 and node.layer_type in self.multi_out_ops:
            node.index = 0
        return node
S
SunAhong1993 已提交
192 193 194 195
    
    def get_input_node(self, node, idx=0, copy=False):
        input_node_name = node.inputs[idx]
        return self.get_node(input_node_name, copy)
J
jiangjiajun 已提交
196

J
jiangjiajun 已提交
197 198 199 200 201
    def remove_node(self, node_name):
        if node_name not in self.node_map:
            raise Exception("Node[{}] not in graph".format(node_name))
        inputs = self.node_map[node_name].inputs
        outputs = self.node_map[node_name].outputs
202
        #        assert len(inputs) == 1
J
jiangjiajun 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216
        input_node = self.node_map[inputs[0]]
        idx = input_node.outputs.index(node_name)
        del input_node.outputs[idx]
        for output in outputs:
            node = self.node_map[output]
            idx = node.inputs.index(node_name)
            node.inputs[idx] = inputs[0]
            input_node.outputs.append(output)

        del self.node_map[node_name]

        idx = self.topo_sort.index(node_name)
        del self.topo_sort[idx]

J
jiangjiajun@baidu.com 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def _optimize_dialiation_conv(self):
        for name in list(self.node_map.keys()):
            node = self.node_map[name]
            if node.layer_type == "SpaceToBatchND":
                is_dilation = True
                out_node0 = self.node_map[node.outputs[0]]
                if out_node0.layer_type != 'ExpandDims':
                    is_dilation = False
                    continue
                out_node1 = self.node_map[out_node0.outputs[0]]
                if out_node1.layer_type != 'Conv2D':
                    is_dilation = False
                    continue
                out_node2 = self.node_map[out_node1.outputs[0]]
                if out_node2.layer_type != 'Squeeze':
                    is_dilation = False
                    continue
                out_node3 = self.node_map[out_node2.outputs[0]]
                if out_node3.layer_type != 'BatchToSpaceND':
                    is_dilation = False
                    continue

                if is_dilation:
                    node.skip = True
                    out_node3.skip = True
                    block_shape = self.node_map[node.inputs[1]]
                    out_node1.dilation = block_shape.value.tolist()

J
jiangjiajun 已提交
245 246 247 248
    def _remove_isolated_node(self):
        # delete isolated nodes
        isolated_nodes = list()
        for node_name in self.node_map.keys():
J
jiangjiajun 已提交
249
            if len(self.get_node(node_name).inputs) == 0 and len(
J
jiangjiajun 已提交
250 251 252
                    self.get_node(node_name).outputs) == 0:
                isolated_nodes.append(node_name)

J
jiangjiajun 已提交
253
        for node_name in isolated_nodes:
J
jiangjiajun 已提交
254 255 256 257 258 259 260 261 262
            del self.node_map[node_name]
            if node_name in self.input_nodes:
                idx = self.input_nodes.index(node_name)
                del self.input_nodes[idx]
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                del self.output_nodes[idx]
            idx = self.topo_sort.index(node_name)
            del self.topo_sort[idx]
J
jiangjiajun 已提交
263 264

    def _remove_identity_node(self):
J
jiangjiajun 已提交
265 266
        identity_ops = [
            'Identity', 'StopGradient', 'Switch', 'Merge',
J
jiangjiajun@baidu.com 已提交
267
            'PlaceholderWithDefault', 'IteratorGetNext'
J
jiangjiajun 已提交
268
        ]
J
jiangjiajun 已提交
269 270
        identity_node = list()
        for node_name, node in self.node_map.items():
J
jiangjiajun 已提交
271
            if node.layer_type in identity_ops:
J
jiangjiajun 已提交
272 273 274 275 276
                identity_node.append(node_name)

        for node_name in identity_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
J
jiangjiajun 已提交
277
            self.remove_node(node_name)
J
jiangjiajun 已提交
278 279 280

            self.identity_map[node_name] = input_node.layer_name

J
jiangjiajun 已提交
281 282 283 284
            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    def _remove_cast_node(self):
        cast_node = list()
        for node_name, node in self.node_map.items():
            if node.layer_type == "Cast":
                input = self.get_node(node.inputs[0])
                if input.layer_type != "Placeholder" or len(input.outputs) != 1:
                    continue
                cast_node.append(node_name)

        for node_name in cast_node:
            node = self.get_node(node_name)
            input_node = self.get_node(node.inputs[0])
            input_node.layer.attr["dtype"].type = node.raw_dtype
            self.remove_node(node_name)

            self.identity_map[node_name] = input_node.layer_name

            if node_name in self.output_nodes:
                idx = self.output_nodes.index(node_name)
                self.output_nodes[idx] = input_node.layer_name

J
jiangjiajun 已提交
306 307 308 309 310 311 312 313 314 315
    def data_format_propagation(self, node):
        current_node = self.node_map[node.layer_name]
        outputs = current_node.outputs
        if len(outputs) == 0:
            return
        for out in outputs:
            next_node = self.node_map[out]
            next_node.tf_data_format = node.tf_data_format
            self.data_format_propagation(next_node)

J
jiangjiajun 已提交
316

J
jiangjiajun 已提交
317
class TFDecoder(object):
318
    def __init__(self, pb_model, data_format="NHWC", define_input_shape=False):
319 320 321 322
        try:
            self.sess = tf.compat.v1.Session()
        except:
            self.sess = tf.Session()
S
SunAhong1993 已提交
323
        self.inputs_info = dict()
324
        self.define_input_shape = define_input_shape
325 326 327 328 329
        with open(pb_model, 'rb') as f:
            try:
                graph_def = tf.compat.v1.GraphDef()
            except:
                graph_def = tf.GraphDef()
J
jiangjiajun 已提交
330
            graph_def.ParseFromString(f.read())
J
jiangjiajun 已提交
331
            input_map = self._check_input_shape(graph_def)
J
jiangjiajun 已提交
332
            self._fix_output_shape(graph_def)
J
jiangjiajun 已提交
333
            self.sess.graph.as_default()
J
jiangjiajun 已提交
334
            tf.import_graph_def(graph_def, name='', input_map=input_map)
335

336 337 338 339 340
        try:
            initializer = tf.compat.v1.global_variables_initializer()
        except:
            initializer = tf.global_variables_initializer()
        self.sess.run(initializer)
J
jiangjiajun 已提交
341

J
jiangjiajun 已提交
342
        self.tf_graph = TFGraph(
J
jiangjiajun 已提交
343
            self.sess.graph._as_graph_def(add_shapes=True)[0], data_format)
J
jiangjiajun 已提交
344
        self.tf_graph.build()
J
jiangjiajun 已提交
345 346 347 348 349 350

    def _fix_output_shape(self, graph):
        for i in range(len(graph.node)):
            node = graph.node[i]
            if node.op == "swish_f32":
                graph.node[i].attr['_disable_call_shape_inference'].b = False
J
jiangjiajun 已提交
351 352

    def _check_input_shape(self, graph_def):
J
jiangjiajun 已提交
353
        numpy.random.seed(13)
J
jiangjiajun 已提交
354 355 356
        graph_def = cp.deepcopy(graph_def)
        input_map = dict()
        for layer in graph_def.node:
M
mamingjie-China 已提交
357
            if layer.op != "Placeholder" and layer.op != "OneShotIterator" and layer.op != "IteratorV2":
J
jiangjiajun 已提交
358 359
                continue
            graph_node = TFGraphNode(layer)
360
            dtype = graph_node.layer.attr['dtype'].type
J
jiangjiajun 已提交
361 362

            need_define_shape = 0
363 364 365 366 367
            if self.define_input_shape:
                need_define_shape = 3
            elif graph_node.layer.attr[
                    'shape'].shape.unknown_rank or not graph_node.get_attr(
                        "shape"):
J
jiangjiajun 已提交
368 369 370 371 372 373 374
                need_define_shape = 1
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
                if shape.count(-1) > 1:
                    need_define_shape = 2

J
jiangjiajun@baidu.com 已提交
375
            if need_define_shape == 1:
J
fix bug  
jiangjiajun 已提交
376 377 378 379 380 381
                try:
                    shape = graph_node.out_shapes[0]
                    if len(shape) > 0 and shape.count(-1) < 2:
                        need_define_shape = 0
                except:
                    pass
J
jiangjiajun@baidu.com 已提交
382

J
jiangjiajun 已提交
383
            if need_define_shape > 0:
384 385 386 387
                shape = None
                if graph_node.get_attr("shape"):
                    value = value = graph_node.layer.attr["shape"].shape
                    shape = [dim.size for dim in value.dim]
J
jiangjiajun 已提交
388
                if need_define_shape == 1:
J
jiangjiajun 已提交
389 390
                    print("Unknown shape for input tensor[tensor name: \"{}\"]".
                          format(layer.name))
391
                elif need_define_shape == 2:
J
jiangjiajun 已提交
392
                    print(
J
jiangjiajun 已提交
393 394
                        "\nShape[now is {}] for input tensor[tensor name: \"{}\"] not support yet"
                        .format(shape, layer.name))
395 396 397 398
                else:
                    print(
                        "Define shape[now is {}] for input tensor[tensor name: \"{}\']"
                        .format(shape, layer.name))
J
jiangjiajun 已提交
399
                print(
J
jiangjiajun 已提交
400 401 402 403
                    "Use your keyboard type the shape of input tensor below :)")

                right_shape_been_input = False
                while not right_shape_been_input:
M
mamingjie-China 已提交
404 405 406 407 408
                    try:
                        shape = raw_input(
                            "Shape of Input(e.g. None,224,224,3): ")
                    except:
                        shape = input("Shape of Input(e.g. None,224,224,3): ")
J
jiangjiajun 已提交
409
                    if shape.count("None") > 1:
J
jiangjiajun 已提交
410
                        print("Only 1 dimension can be None, type again:)")
J
jiangjiajun 已提交
411 412 413
                    else:
                        right_shape_been_input = True

J
jiangjiajun 已提交
414 415 416 417
                shape = [
                    None if dim == "None" else int(dim)
                    for dim in shape.strip().split(',')
                ]
J
jiangjiajun 已提交
418
                assert shape.count(None) <= 1, "Only one dimension can be None"
419 420 421 422 423 424
                try:
                    x2paddle_input = tf.compat.v1.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
                except:
J
jiangjiajun 已提交
425 426 427 428
                    x2paddle_input = tf.placeholder(
                        dtype=dtype,
                        shape=shape,
                        name="x2paddle_{}".format(layer.name))
429

J
jiangjiajun 已提交
430
                input_map["{}:0".format(layer.name)] = x2paddle_input
431 432
                if shape.count(None) > 0:
                    shape[shape.index(None)] = -1
S
SunAhong1993 已提交
433
                self.inputs_info["x2paddle_{}".format(layer.name)] = (shape,
J
jiangjiajun 已提交
434 435 436 437
                                                                     dtype)
            else:
                value = graph_node.layer.attr["shape"].shape
                shape = [dim.size for dim in value.dim]
S
SunAhong1993 已提交
438
                self.inputs_info[layer.name] = (shape, dtype)
J
jiangjiajun 已提交
439

J
jiangjiajun 已提交
440
        return input_map
J
jiangjiajun 已提交
441 442 443

    # trick method
    # should be removed after PaddlePaddle V1.6 been released
S
SunAhong1993 已提交
444
    def infer_tensor(self, graph_node, out_shape=None, use_diff_inputs=True):
J
jiangjiajun 已提交
445 446 447 448 449
        if hasattr(graph_node, "index"):
            tensor_name = graph_node.layer.name + ":{}".format(graph_node.index)
        else:
            tensor_name = graph_node.layer.name + ":0"
        feed = dict()
S
SunAhong1993 已提交
450 451
        if use_diff_inputs:
            batch_size = [2, 3, 5]
J
jiangjiajun 已提交
452
        else:
S
SunAhong1993 已提交
453
            batch_size = [2]
J
jiangjiajun 已提交
454 455
        results = list()
        for b in batch_size:
S
SunAhong1993 已提交
456
            for input_name, info in self.inputs_info.items():
J
jiangjiajun 已提交
457
                (shape, dtype) = cp.deepcopy(info)
S
SunAhong1993 已提交
458
                input_tensor = self.sess.graph.get_tensor_by_name(input_name + ":0")
J
jiangjiajun 已提交
459 460 461 462
                if shape.count(-1) > 0:
                    shape[shape.index(-1)] = b
                feed[input_tensor] = numpy.random.random_sample(shape)
            output_tensor = self.sess.graph.get_tensor_by_name(tensor_name)
S
SunAhong1993 已提交
463 464 465 466
            if use_diff_inputs:
                results.append(self.sess.run([output_tensor], feed)[0].flatten())
            else:
                return self.sess.run([output_tensor], feed)[0]
J
jiangjiajun 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490

        compare01 = (results[0] == results[1])
        compare12 = (results[1] == results[2])

        if compare01.all() and compare12.all():
            return results[0].tolist()

        if (compare01 == compare12).all():
            index = numpy.argwhere(compare01 == False).flatten()
            if index.shape[0] != 1:
                raise Exception("There's not only one unstable dimension")
            results[0][index[0]] = -1

            index = numpy.argwhere(results[0] < 0).flatten()
            if index.shape[0] > 2:
                print("Warning: More than two dimension less than zero")
            if index.shape[0] == 2 and out_shape is not None:
                if out_shape[index[1]] > 0:
                    results[0][index[1]] = out_shape[index[1]]
                else:
                    results[0][index[0]] = out_shape[index[0]]
            return results[0].tolist()
        else:
            raise Exception("Couldn't infer a stable shape shape tensor value")