opset9.py 56.9 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from functools import reduce
C
update  
channingss 已提交
21
import numpy as np
C
channingss 已提交
22
import onnx
C
channingss 已提交
23
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
24
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
25
import logging as _logging
26
from collections import OrderedDict
C
channingss 已提交
27
import math
C
channingss 已提交
28 29
import os
import shutil
30

C
update  
channingss 已提交
31 32 33 34
_logger = _logging.getLogger(__name__)


def _const_weight_or_none(node):
C
channings 已提交
35
    if 'Constant' in node.layer_type:
C
channingss 已提交
36
        return node.value
C
update  
channingss 已提交
37 38 39 40 41
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
    return None


C
channingss 已提交
42 43 44 45 46 47 48 49
def get_same_padding(in_size, kernel_size, stride):
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
67
class OpSet9():
68 69 70 71 72
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
73 74
        'Pow': 'elementwise_pow',
    }
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
110 111 112 113
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
138
    default_ioa_constraint = {}
139 140

    def __init__(self, decoder):
C
Channingss 已提交
141
        super(OpSet9, self).__init__()
142
        self.graph = decoder.graph
C
update  
channingss 已提交
143 144 145
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
146
        self.used_custom_layers = dict()
R
root 已提交
147

148
    @print_mapping_info
C
channingss 已提交
149
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
150 151 152 153
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
154 155 156
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
157 158 159 160 161 162 163 164
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
165
            fill_name_field, ) = info
C
update  
channingss 已提交
166

167 168
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
169 170 171 172 173 174 175 176 177 178 179 180
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
181
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
182
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
183 184 185 186
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
187 188 189
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
190
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
191
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
192
            attr['name'] = string(node.layer_name)
193 194 195 196 197 198 199 200 201 202
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
203 204 205
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
206
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
207 208 209
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
210 211 212 213 214 215
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
216 217
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
218
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
219 220 221
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
222

223
    @print_mapping_info
224 225 226
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
227

228 229 230 231
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
232 233

        if len(val_x_shape) < len(val_y_shape):
234
            val_x, val_y = val_y, val_x
235
            val_y_shape, val_x_shape = val_x_shape, val_y_shape
236 237 238

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
239
        slice_idx = 0
240 241 242 243 244 245
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
246 247 248 249 250 251 252 253
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
254 255 256 257 258
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_y,
                output=var_y_reshaped,
                param_attr=attr_reshaped)
259
            inputs = {'x': val_x, 'y': var_y_reshaped}
260 261
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
262 263
        else:
            inputs = {'x': val_x, 'y': val_y}
264 265
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
C
channingss 已提交
266

267
    @print_mapping_info
C
update  
channingss 已提交
268
    def place_holder(self, node):
C
channingss 已提交
269
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
270

C
channings 已提交
271 272
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
273 274 275
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
276
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
277 278
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
279
            "shape": shape,
C
update  
channingss 已提交
280 281 282 283
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

284 285
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
286

287
    @print_mapping_info
C
update  
channingss 已提交
288 289 290 291
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
292
        shape = node.out_shapes[0]
C
channingss 已提交
293 294
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
295 296 297 298 299 300 301
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
332
    def _interpolate(self, node):
C
channingss 已提交
333
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
334 335 336 337
        if node.layer_type == 'Resize':
            val_scales = self.graph.get_input_node(node, idx=2, copy=True)
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
338 339

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
340 341
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
342
        if 'linear' in mode:
R
root 已提交
343 344 345
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
346
            fluid_op = 'resize_bilinear'
R
root 已提交
347

348 349 350 351 352 353
        node.fluid_code.add_layer(
            fluid_op,
            inputs={'input': val_x,
                    'scale': val_scales},
            output=node,
            param_attr=attr)
R
root 已提交
354

355
    @print_mapping_info
C
channings 已提交
356 357 358
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
359 360 361

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
362 363 364
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
365 366 367 368 369
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
370 371 372 373 374 375 376 377
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
378 379 380
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
381

C
channings 已提交
382 383 384
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
385 386 387 388
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
389 390 391 392 393 394 395 396
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
397
    def Pad(self, node, op_independent=True):
C
channingss 已提交
398
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
399 400 401
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
402 403
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
425 426 427 428
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
429 430 431
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
432 433
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
434 435
        else:
            attr['name'] = string(node.layer_name + '_paded')
436 437 438 439 440
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
441 442
            return node.layer_name + '_paded'

443
    @print_mapping_info
C
update  
channingss 已提交
444
    def Unsqueeze(self, node):
C
channingss 已提交
445
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
446
        axes = node.get_attr('axes')
447
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
448
        if len(val_x.out_shapes[0]) == 0:
449 450 451 452 453 454
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
455
        else:
456 457
            node.fluid_code.add_layer(
                'unsqueeze', inputs=val_x, output=node, param_attr=attr)
458

459
    @print_mapping_info
C
channingss 已提交
460
    def Shrink(self, node):
C
channingss 已提交
461
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
462 463 464 465
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
466 467
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
468

469 470 471 472 473 474 475 476 477 478 479
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            'greater_than',
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
C
update  
channingss 已提交
480 481 482 483 484 485 486 487
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
488

C
update  
channingss 已提交
489
        shape = node.get_attr('shape', None)
R
root 已提交
490

C
update  
channingss 已提交
491
        if shape is None:
C
channingss 已提交
492
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
493 494
        if shape is None:
            shape = list(value.shape)
495 496 497 498
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
C
update  
channingss 已提交
499

500
        if len(value) == 1:
C
channingss 已提交
501
            value = value.tolist()
C
update  
channingss 已提交
502 503 504 505 506
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
507 508
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
509
        else:
510 511
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
512 513 514 515 516 517 518 519
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
520 521
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
522

523
    @print_mapping_info
C
update  
channingss 已提交
524
    def Resize(self, node):
525 526
        self._interpolate(node)

527
    @print_mapping_info
528 529 530
    def Upsample(self, node):
        self._interpolate(node)

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
546
    def Expand(self, node):
C
channingss 已提交
547
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
548
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
549 550

        if len(val_shape.outputs) == 1:
551 552
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
553
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
554
        out_shape = node.out_shapes[0]
555
        val_x_dtype = val_x.dtype
R
root 已提交
556 557 558

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
559 560
        node.fluid_code.add_layer(
            'ones', inputs=None, output=name_ones, param_attr=attr_ones)
R
root 已提交
561 562
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
563 564 565 566 567
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
            param_attr=attr)
C
update  
channingss 已提交
568

569
    @print_mapping_info
C
channingss 已提交
570 571 572 573
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
574
        axis = node.get_attr('axis', 0)
575 576
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
577
        if axis == 0 and len(indices_shape) <= 1:
578 579 580 581 582 583
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': val_x,
                        'index': indices},
                output=node,
                param_attr=None)
C
channingss 已提交
584 585
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
586 587 588
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
                node.fluid_code.add_layer(
                    'embedding',
                    inputs=indices,
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                #indices_shape = [1,7]
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
644
            from functools import reduce
R
root 已提交
645
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
646 647 648 649 650 651
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
652

C
Channingss 已提交
653 654 655 656
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
657 658 659 660 661 662 663 664 665 666 667 668 669
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
670 671 672 673 674 675
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
            node.fluid_code.add_layer(
                'reshape',
                inputs=node,
                output=node,
                param_attr={'shape': reshaped_shape})

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
696
    def Slice(self, node):
C
channingss 已提交
697
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
698
        starts, ends, axes, steps = None, None, None, None
699
        attr = {}
C
channingss 已提交
700 701 702
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
703
            if len(node.inputs) > 3:
C
channings 已提交
704 705
                axes = self.graph.get_input_node(node, idx=3, copy=True)
                axes = _const_weight_or_none(axes)
R
root 已提交
706
            if len(node.inputs) > 4:
C
channings 已提交
707 708
                steps = self.graph.get_input_node(node, idx=4, copy=True)
                steps = _const_weight_or_none(steps)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
                        output=starts,
                        param_attr={'dtype': string('int32')})
                if ends.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
                        output=ends,
                        param_attr={'dtype': string('int32')})
C
channingss 已提交
743 744 745 746
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
747 748 749 750
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
751

752 753
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
754

755
    @print_mapping_info
C
update  
channingss 已提交
756
    def ConstantOfShape(self, node):
C
channingss 已提交
757
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
758
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
759 760 761 762

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
763 764
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
765 766 767 768
        if len(value) == 1:
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
769 770 771 772 773 774 775
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
776

777
    @print_mapping_info
C
update  
channingss 已提交
778
    def Split(self, node):
C
channingss 已提交
779 780
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
781 782

        fluid_op = 'split'
C
channingss 已提交
783
        split = node.get_attr('split')
C
update  
channingss 已提交
784
        axis = node.get_attr('axis', 0)
C
channingss 已提交
785 786 787 788 789
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
790

791 792
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
793

794
    @print_mapping_info
C
update  
channingss 已提交
795
    def Reshape(self, node):
C
channingss 已提交
796 797
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
798
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_shape_cast,
                output=val_shape_cast,
                param_attr={'shape': val_shape.out_shapes[0]})
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_shape,
                output=val_shape,
                param_attr={'shape': val_shape.out_shapes[0]})
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
841
    def Cast(self, node):
C
channingss 已提交
842
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
843 844 845 846 847 848 849 850 851 852
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
853 854
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
855

856
    @print_mapping_info
C
update  
channingss 已提交
857
    def AveragePool(self, node):
C
channingss 已提交
858
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
859 860

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
861 862 863 864 865 866 867 868
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
869

C
channingss 已提交
870 871
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
872
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
873
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
874 875 876 877 878 879
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
880 881 882 883 884 885 886 887 888 889
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

890 891
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
892

893
    @print_mapping_info
C
update  
channingss 已提交
894 895 896
    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
897
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
898 899 900 901 902 903
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
904 905
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
906

907
    @print_mapping_info
C
update  
channingss 已提交
908
    def Flatten(self, node):
C
channingss 已提交
909
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
910 911
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
912 913
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
914

915
    @print_mapping_info
C
update  
channingss 已提交
916
    def Gemm(self, node):
C
channingss 已提交
917 918 919
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
933 934 935 936 937
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
938

C
update  
channingss 已提交
939 940 941 942
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
943 944 945 946 947
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
948
            else:
C
channingss 已提交
949 950
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
951 952 953 954 955
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
956 957 958

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
959 960 961 962 963
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
964

965
    @print_mapping_info
C
update  
channingss 已提交
966
    def Sum(self, node):
967
        val_inps = node.layer.input
968
        inputs = {
969 970 971 972
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
973 974
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
975

C
channingss 已提交
976 977
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
978 979
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
980
                "y": y,
981
            }
982 983
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
984

985
    @print_mapping_info
C
update  
channingss 已提交
986
    def MatMul(self, node):
C
channingss 已提交
987 988
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
989 990
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
991 992
        node.fluid_code.add_layer(
            "matmul", inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
993

994
    @print_mapping_info
C
update  
channingss 已提交
995
    def BatchNormalization(self, node):
C
channingss 已提交
996 997 998 999 1000
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1010 1011
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1012 1013 1014 1015
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1016
            "is_test": True,
C
update  
channingss 已提交
1017 1018 1019 1020
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1021
            "use_global_stats": spatial,
C
update  
channingss 已提交
1022 1023
            "name": string(node.layer_name)
        }
1024 1025
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1026

1027
    @print_mapping_info
C
update  
channingss 已提交
1028
    def Transpose(self, node):
C
channingss 已提交
1029
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1030 1031
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1032 1033
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1034

1035
    @print_mapping_info
C
update  
channingss 已提交
1036
    def Relu(self, node):
C
channingss 已提交
1037
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1038
        attr = {"name": string(node.layer_name)}
1039 1040
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1041

1042
    @print_mapping_info
C
update  
channingss 已提交
1043
    def PRelu(self, node):
C
channingss 已提交
1044 1045
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1046

C
channingss 已提交
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1057 1058
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1059

1060
    @print_mapping_info
C
update  
channingss 已提交
1061
    def Squeeze(self, node):
C
channingss 已提交
1062 1063 1064
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1065 1066 1067 1068 1069 1070 1071 1072 1073
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1074

1075
    @print_mapping_info
C
channings 已提交
1076 1077 1078
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1079 1080 1081 1082 1083 1084 1085
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1097
    @print_mapping_info
C
channings 已提交
1098 1099 1100 1101
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1102

C
channings 已提交
1103
        not_condition = condition.layer_name + '_not'
1104 1105 1106 1107 1108
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1109
        cast_not_condition = not_condition + '_cast'
1110 1111 1112 1113 1114
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1115
        cast_condition = condition.layer_name + '_cast'
1116 1117 1118 1119 1120
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1121
        mul_val_x = val_x.layer_name + '_mul'
1122 1123 1124 1125 1126 1127
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
R
root 已提交
1128

C
channings 已提交
1129
        mul_val_y = val_y.layer_name + '_mul'
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1145 1146
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
        val_x_dim = len(val_x.out_shapes[0])
        print(val_x.layer_name, val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1167
    def Identity(self, node):
C
channingss 已提交
1168
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1169
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1170

1171
    @print_mapping_info
C
channings 已提交
1172 1173 1174 1175
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1176

1177 1178 1179
        if repeats is None:
            repeats = val_repeats.layer_name
        elif isinstance(repeats, int):
C
channings 已提交
1180
            repeats = [repeats]
R
root 已提交
1181

C
channings 已提交
1182
        attr = {
R
root 已提交
1183
            'expand_times': repeats,
C
channings 已提交
1184 1185
            "name": string(node.layer_name),
        }
1186 1187
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1188

1189
    @print_mapping_info
C
update  
channingss 已提交
1190
    def MaxPool(self, node):
C
channingss 已提交
1191
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1192
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1204

C
channingss 已提交
1205 1206
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1207
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1208
            input_shape = val_x.out_shapes[0]
C
channingss 已提交
1209 1210 1211 1212 1213 1214
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

C
update  
channingss 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1224 1225
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1226

C
channings 已提交
1227
    def _global_pool(self, node):
C
channingss 已提交
1228
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1229
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1230
        fluid_op = 'pool2d'
C
channings 已提交
1231 1232 1233 1234 1235 1236
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1237
        attr = {
C
channings 已提交
1238
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1239 1240 1241
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1242 1243
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1244

1245
    @print_mapping_info
C
channings 已提交
1246 1247
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1248

1249
    @print_mapping_info
C
channings 已提交
1250 1251
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1252

1253
    @print_mapping_info
C
update  
channingss 已提交
1254
    def Conv(self, node):
C
channingss 已提交
1255 1256
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1257 1258 1259 1260 1261 1262
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1263
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1264 1265 1266
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1267
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1268 1269
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
channingss 已提交
1270
        num_out_channels = val_w.out_shapes[0][0]  # OI...
C
update  
channingss 已提交
1271 1272 1273 1274 1275 1276 1277
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)  # optional
        dilations = node.get_attr('dilations', [1] * convnd)  # optional
        pads = node.get_attr('pads', [0] * (convnd * 2))  # optional

C
channingss 已提交
1278
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1279 1280
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1281
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
update  
channingss 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
            pad_h = get_same_padding(input_shape[2], kernel_shape[0],
                                     strides[0])
            pad_w = get_same_padding(input_shape[3], kernel_shape[1],
                                     strides[1])
            attr = {"paddings": pad_h + pad_w, "pad_value": 0.0}

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1302 1303
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1304

1305
    @print_mapping_info
C
channingss 已提交
1306
    def ConvTranspose(self, node):
C
channingss 已提交
1307 1308
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1309
        val_b = None
R
root 已提交
1310
        if len(node.layer.input) > 2:
C
channingss 已提交
1311 1312
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1313 1314 1315 1316 1317 1318
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1319
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1320 1321 1322
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1323
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1324 1325
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1326 1327 1328 1329 1330
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1331 1332 1333 1334

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1335

1336 1337
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1338
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1339 1340
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1351
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1352 1353
            'name': string(node.layer_name),
        }
1354 1355
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channings 已提交
1356

1357
    @print_mapping_info
C
channings 已提交
1358 1359 1360 1361
    def GRU(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
        val_r = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1362

C
channings 已提交
1363 1364 1365 1366 1367
        val_b = None
        val_len = None
        val_xh = None
        miss_arg_num = 0
        num_ipt = len(node.layer.input)
R
root 已提交
1368
        if num_ipt > 3 and node.layer.input[3] != '':
C
channings 已提交
1369 1370 1371
            val_b = self.graph.get_input_node(node, idx=3, copy=True)
        else:
            miss_arg_num += 1
R
root 已提交
1372
        if num_ipt > 4 and node.layer.input[4] != '':
1373 1374
            val_len = self.graph.get_input_node(
                node, idx=4 - miss_arg_num, copy=True)
C
channings 已提交
1375 1376
        else:
            miss_arg_num += 1
R
root 已提交
1377
        if num_ipt > 5 and node.layer.input[5] != '':
1378 1379
            val_xh = self.graph.get_input_node(
                node, idx=5 - miss_arg_num, copy=True)
R
root 已提交
1380

C
channings 已提交
1381
        x_shape = val_x.out_shapes[0]
R
root 已提交
1382

C
channings 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        assert x_shape[1] == 1, 'only X with batch_size = 1 supported'
        assert node.get_attr('clip', None) is None, 'clipping not supported'

        hidden_size = node.get_attr('hidden_size', None)
        if hidden_size is None:
            r_shape = val_r.out_shapes[0]
            if r_shape:
                hidden_size = r_shape[-1]
        if hidden_size is None:
            w_shape = var_w.out_shapes[0]
            if w_shape:
                hidden_size = w_shape[-2] // 3
        if hidden_size is None and val_b:
            b_shape = val_b.out_shapes[0]
            if b_shape:
                hidden_size = b_shape[-1] // 6
        if hidden_size is None and val_xh:
            xh_shape = val_xh.out_shapes[0]
            if xh_shape:
                hidden_size = xh_shape[-1]
R
root 已提交
1403 1404

        direction = node.get_attr('direction', 'forward')
C
channings 已提交
1405
        assert direction != 'bidirectional', 'direction = bidirectional not supported'
R
root 已提交
1406

C
channings 已提交
1407 1408
        activations = node.get_attr('activations', ['Sigmoid', 'Tanh'])
        assert len(activations) == 2, 'bidirectional operation not supported'
R
root 已提交
1409 1410 1411 1412

        assert node.get_attr('linear_before_reset',
                             0) == 0, 'only linear_before_reset = 0 supported'

C
channings 已提交
1413 1414 1415
        activations = [s.lower() for s in activations]
        gate_activation, candidate_activation = activations
        is_reverse = direction == 'reverse'
R
root 已提交
1416

C
channings 已提交
1417
        var_x0 = node.layer_name + '_x0'
1418 1419 1420 1421 1422 1423
        node.fluid_code.add_layer(
            'squeeze',
            inputs=val_x,
            output=var_x0,
            param_attr={'axes': [1],
                        'name': string(var_x0)})
R
root 已提交
1424

C
channings 已提交
1425
        var_w0 = node.layer_name + '_w0'
1426 1427 1428 1429 1430 1431
        node.fluid_code.add_layer(
            'squeeze',
            inputs=val_w,
            output=var_w0,
            param_attr={'axes': [0],
                        'name': string(var_w0)})
R
root 已提交
1432

C
channings 已提交
1433 1434
        var_fc = node.layer_name + '_fc'
        var_mm = (node.layer_name + '_mm') if val_b else var_fc
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        node.fluid_code.add_layer(
            'matmul',
            inputs={'x': var_x0,
                    'y': var_w0},
            output=var_mm,
            param_attr={
                'transpose_x': 0,
                'transpose_y': 1,
                'name': string(var_mm)
            })
R
root 已提交
1445

C
channings 已提交
1446
        var_r0 = node.layer_name + '_r0'
1447 1448 1449 1450 1451 1452
        node.fluid_code.add_layer(
            'squeeze',
            inputs=val_r,
            output=var_r0,
            param_attr={'axes': [0],
                        'name': string(var_r0)})
R
root 已提交
1453 1454 1455

        var_r0t = node.layer_name + '_r0t'

1456 1457 1458 1459 1460 1461
        node.fluid_code.add_layer(
            'transpose',
            inputs=var_r0,
            output=var_r0t,
            param_attr={'perm': [1, 0],
                        'name': string(var_r0t)})
C
channings 已提交
1462 1463 1464
        if val_b:
            var_bi = node.layer_name + '_bi'
            var_bh = node.layer_name + '_bh'
1465 1466 1467 1468 1469 1470 1471 1472 1473
            node.fluid_code.add_layer(
                'split',
                inputs=val_b,
                output=var_bi + ',' + var_bh,
                param_attr={
                    'axis': 1,
                    'split': [hidden_size * 3, hidden_size * 3],
                    'name': string(node.layer_name + '.b/split')
                })
C
channings 已提交
1474
            var_bi0 = node.layer_name + '_bi0'
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
            node.fluid_code.add_layer(
                'squeeze',
                inputs=var_bi,
                output=var_bi0,
                param_attr={'axes': [0],
                            'name': string(var_bi0)})

            node.fluid_code.add_layer(
                'elmentwise_add',
                inputs=[var_mm, var_bi0],
                output=var_fc,
                param_attr={
                    'axes': 1,
                    'name': string(node.layer_name + '.i/bias')
                })
C
channings 已提交
1490 1491 1492

        if val_xh:
            var_xh0 = node.layer_name + '_xh0'
1493 1494 1495 1496 1497 1498
            node.fluid_code.add_layer(
                'squeeze',
                inputs=val_xh,
                output=var_xh0,
                param_attr={'axes': [1],
                            'name': string(var_xh0)})
C
channings 已提交
1499
        var_y00 = node.layer_name + '_y00'
R
root 已提交
1500 1501 1502

        attr = {
            'origin_mode': True,
C
channings 已提交
1503
            'h_0': var_xh0 if val_xh else None,
R
root 已提交
1504 1505 1506 1507 1508
            'is_reverse': is_reverse,
            'gate_activation': string(gate_activation),
            'candidate_activation': string(candidate_activation),
            'param_attr': string(var_r0t),
            'bias_attr': string(var_bh) if val_b else False,
C
channings 已提交
1509
        }
1510 1511 1512 1513 1514
        node.fluid_code.add_layer(
            'dynamic_gru',
            inputs=var_fc + ',' + str(hidden_size),
            output=var_y00,
            param_attr=attr)
R
root 已提交
1515

C
channings 已提交
1516
        num_opt = len(node.layer.output)
R
root 已提交
1517 1518

        if num_opt > 0 and node.layer.output[0] != '':
1519 1520 1521 1522 1523 1524 1525 1526
            node.fluid_code.add_layer(
                'unsqueeze',
                inputs=var_y00,
                output=node.layer.output[0],
                param_attr={
                    'axes': [1, 1],
                    'name': string(node.layer.output[0])
                })
R
root 已提交
1527
        if num_opt > 1 and node.layer.output[1] != '':
1528 1529 1530 1531 1532 1533 1534 1535
            node.fluid_code.add_layer(
                'unsqueeze',
                inputs=var_y00,
                output=node.layer.output[1],
                param_attr={
                    'axes': [1, 1],
                    'name': string(node.layer.output[1])
                })