tf_optimizer.py 28.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO useless node remove
J
jiangjiajun 已提交
16
from x2paddle.op_mapper.tf_op_mapper import TFOpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.fluid_code import Layer
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19
import numpy
J
jiangjiajun 已提交
20
import copy as cp
J
jiangjiajun 已提交
21 22


J
jiangjiajun 已提交
23 24 25 26 27 28 29 30 31
class TFOptimizer(object):
    activation_ops = {
        'Relu': 'relu',
        'Sigmoid': 'sigmoid',
        'Relu6': 'relu6',
        'swish_f32': 'swish'
    }
    layers_with_act = [
        'Conv2D', 'BiasAdd', 'DepthwiseConv2dNative', 'Conv2DBackpropInput',
32 33
        'FusedBatchNorm', 'conv2d', 'elementwise_add', 'conv2d_transpose',
        'batch_norm'
J
jiangjiajun 已提交
34 35
    ]
    layers_with_bias = [
36 37
        'Conv2D', 'DepthwiseConv2dNative', 'Conv2DBackpropInput', 'conv2d',
        'conv2d_transpose'
J
jiangjiajun 已提交
38
    ]
39

J
jiangjiajun 已提交
40 41 42 43 44 45 46 47
    def __init__(self, op_mapper):
        self.op_mapper = op_mapper
        self.graph = op_mapper.graph

    def delete_redundance_code(self):
        for node_name in self.graph.topo_sort:
            if node_name in self.op_mapper.omit_nodes:
                node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
48 49
                if node is None:
                    continue
J
jiangjiajun 已提交
50 51 52 53
                omit_freq = self.op_mapper.omit_nodes.count(node_name)
                if len(node.outputs) <= omit_freq:
                    node.fluid_code.clear()

J
jiangjiajun 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
                    # remove node from graph
                    input_names = node.inputs
                    output_names = node.outputs
                    for in_name in input_names:
                        in_node = self.graph.get_node(in_name)
                        index = in_node.outputs.index(node_name)
                        del in_node.outputs[index]
                    for out_name in output_names:
                        out_node = self.graph.get_node(out_name)
                        index = out_node.inputs.index(node_name)
                        del out_node.inputs[index]
                    del self.graph.node_map[node_name]

    def strip_graph(self):
        visited_nodes = set()

        def visit(node_name):
            if node_name in visited_nodes:
                return
            visited_nodes.add(node_name)
            input_names = self.graph.get_node(node_name).inputs
            for in_name in input_names:
                visit(in_name)

        for node_name in self.graph.output_nodes:
            visit(node_name)

        for i, node_name in enumerate(self.graph.topo_sort):
            if node_name not in visited_nodes:
                node = self.graph.get_node(node_name)
                if node is None:
                    continue
                input_names = node.inputs
                output_names = node.outputs
                for in_name in input_names:
                    in_node = self.graph.get_node(in_name)
                    index = in_node.outputs.index(node_name)
                    del in_node.outputs[index]
                for out_name in output_names:
                    out_node = self.graph.get_node(out_name)
                    index = out_node.inputs.index(node_name)
                    del out_node.inputs[index]
                del self.graph.node_map[node_name]

J
jiangjiajun 已提交
98 99 100 101
    def merge_activation(self):
        act_nodes = list()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
102 103
            if node is None:
                continue
J
jiangjiajun 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            if node.layer_type in self.activation_ops:
                act_nodes.append(node_name)

        for act_node_name in act_nodes:
            node = self.graph.get_node(act_node_name)
            input = self.graph.get_node(node.inputs[0])
            if input.layer_type not in self.layers_with_act:
                continue
            if len(input.fluid_code.layers) == 0:
                continue
            if 'act' in input.fluid_code.layers[
                    -1].param_attr and input.fluid_code.layers[-1].param_attr[
                        'act'] is not None:
                continue
            if len(input.outputs) != 1:
                continue
120 121 122 123 124 125
            index = -1
            for i in range(len(input.fluid_code.layers)):
                if input.fluid_code.layers[i].op in self.layers_with_act:
                    index = i
                    break
            input.fluid_code.layers[index].param_attr['act'] = string(
J
jiangjiajun 已提交
126 127 128 129 130 131 132 133
                self.activation_ops[node.layer_type])
            input.fluid_code.layers[-1].output = node.fluid_code.layers[
                0].output
            self.graph.remove_node(act_node_name)

    def merge_bias(self):
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
134 135
            if node is None:
                continue
J
jiangjiajun 已提交
136 137 138 139 140 141 142 143 144 145 146 147
            if node.layer_type == "BiasAdd":
                input = self.graph.get_node(node.inputs[0])
                if input.layer_type not in self.layers_with_bias:
                    continue
                if len(input.outputs) != 1:
                    continue
                if len(input.fluid_code.layers) == 0:
                    continue
                bias_with_act = False
                if 'act' in node.fluid_code.layers[-1].param_attr:
                    bias_with_act = True
                layer_with_act = False
148 149 150 151 152
                index = -1
                for i in range(len(input.fluid_code.layers)):
                    if input.fluid_code.layers[i].op in self.layers_with_bias:
                        index = i
                        break
J
jiangjiajun 已提交
153
                if 'act' in input.fluid_code.layers[
154 155
                        index].param_attr and input.fluid_code.layers[
                            index].param_attr['act'] is not None:
J
jiangjiajun 已提交
156 157 158 159
                    layer_with_act = True

                if bias_with_act and layer_with_act:
                    continue
160
                if not input.fluid_code.layers[index].param_attr['bias_attr']:
J
jiangjiajun 已提交
161
                    bias_name = node.inputs[1]
162
                    input.fluid_code.layers[index].param_attr[
J
jiangjiajun 已提交
163 164 165 166
                        'bias_attr'] = string(bias_name)
                    input.fluid_code.layers[-1].output = node.fluid_code.layers[
                        0].output
                    if bias_with_act:
167
                        input.fluid_code.layers[index].param_attr[
J
jiangjiajun 已提交
168 169 170
                            'act'] = node.fluid_code.layers[-1].param_attr[
                                'act']
                    node.fluid_code.clear()
171 172 173
                    self.graph.remove_node(node.layer_name)

    def remove_transpose(self):
J
jiangjiajun 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
        graph_copy = cp.deepcopy(self.graph)
        nhwc_insensitive_ops = [
            'Relu', 'Relu6', 'Abs', 'Sigmoid', 'Exp', 'Rsqrt', 'swish_f32',
            'LeakyRelu', 'Cast'
        ]
        elementwise_ops = [
            'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv',
            'GreaterEqual'
        ]
        for node_name in self.graph.topo_sort:
            node = graph_copy.get_node(node_name)
            if node is None:
                continue
            if node.layer_type in nhwc_insensitive_ops:
                graph_copy.remove_node(node_name)

190 191 192
        optimize_ops = [
            'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative',
            'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor',
J
jiangjiajun 已提交
193
            'ResizeBilinear', "Placeholder"
194
        ]
J
jiangjiajun 已提交
195

196
        for node_name in self.graph.topo_sort:
J
jiangjiajun 已提交
197
            node = graph_copy.get_node(node_name)
198 199
            if node is None:
                continue
J
jiangjiajun 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
            if node.layer_type in elementwise_ops:
                is_nhwc = True
                for in_name in node.inputs:
                    in_node = graph_copy.get_node(in_name)
                    if hasattr(in_node, "is_nhwc"):
                        if not in_node.is_nhwc:
                            is_nhwc = False
                    else:
                        if len(in_node.fluid_code.layers) < 2:
                            is_nhwc = False
                            continue
                        if in_node.fluid_code.layers[
                                -1].op != "transpose" or in_node.fluid_code.layers[
                                    -1].param_attr["perm"] != [0, 2, 3, 1]:
                            is_nhwc = False
                            continue
                node.is_nhwc = is_nhwc

        for i in range(len(self.graph.topo_sort)):
            node_name = self.graph.topo_sort[-1 * i - 1]
            node = graph_copy.get_node(node_name)
            if node is None:
222
                continue
J
jiangjiajun 已提交
223 224 225
            if node.layer_type in elementwise_ops:
                can_be_removed = True
                if len(node.fluid_code.layers) > 1:
226
                    can_be_removed = False
J
jiangjiajun 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                if not node.is_nhwc:
                    can_be_removed = False
                for out_name in node.outputs:
                    out_node = graph_copy.get_node(out_name)
                    if hasattr(out_node, "is_nhwc"):
                        if not out_node.is_nhwc:
                            can_be_removed = False
                    else:
                        if len(out_node.fluid_code.layers) < 2:
                            can_be_removed = False
                            break
                        if out_node.fluid_code.layers[
                                0].op != "transpose" or out_node.fluid_code.layers[
                                    0].param_attr["perm"] != [0, 3, 1, 2]:
                            can_be_removed = False
                            break
                node.can_be_removed = can_be_removed
244

J
jiangjiajun 已提交
245 246 247 248 249 250 251 252 253 254 255
        for node_name in self.graph.topo_sort:
            node = graph_copy.get_node(node_name)
            if node is None:
                continue
            if node.layer_type in optimize_ops:
                if node.fluid_code.layers[
                        -1].op != "transpose" or node.fluid_code.layers[
                            -1].param_attr["perm"] != [0, 2, 3, 1]:
                    continue
                can_be_removed = True
                output_names = node.outputs
256
                for out_name in output_names:
J
jiangjiajun 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                    out_node = graph_copy.get_node(out_name)
                    if hasattr(out_node, "can_be_removed"):
                        if not out_node.can_be_removed:
                            can_be_removed = False
                            break
                    elif out_node.fluid_code.layers[
                            0].op != "transpose" or out_node.fluid_code.layers[
                                0].param_attr["perm"] != [0, 3, 1, 2]:
                        can_be_removed = False
                        break
                if can_be_removed and len(node.fluid_code.layers) > 1:
                    true_node = self.graph.get_node(node_name)
                    if true_node.layer_type == "Placeholder":
                        index = self.graph.input_nodes.index(
                            true_node.fluid_code.layers[-2].output)
                        if isinstance(true_node.fluid_code.layers[-1].output,
                                      str):
                            self.graph.input_nodes[
                                index] = true_node.fluid_code.layers[-1].output
                        else:
                            self.graph.input_nodes[
                                index] = true_node.fluid_code.layers[
                                    -1].output.layer_name
                    true_node.fluid_code.layers[
                        -2].output = true_node.fluid_code.layers[-1].output
                    node.removed = True
                    del true_node.fluid_code.layers[-1]
                    for out_name in output_names:
                        out_node = self.graph.get_node(out_name)
                        if out_node.layer_type in elementwise_ops:
                            continue
                        out_node.fluid_code.layers[
                            1].inputs = out_node.fluid_code.layers[0].inputs
290
                        del out_node.fluid_code.layers[0]
J
jiangjiajun 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

        for node_name in self.graph.topo_sort:
            node = graph_copy.get_node(node_name)
            if node is None:
                continue
            if node.layer_type in elementwise_ops:
                if not node.can_be_removed:
                    true_node = self.graph.get_node(node_name)
                    for i, in_name in enumerate(node.inputs):
                        in_node = graph_copy.get_node(in_name)
                        if hasattr(in_node, "is_nhwc") and in_node.is_nhwc:
                            if i == 0:
                                l = Layer()
                                l.op = "transpose"
                                l.inputs = true_node.fluid_code.layers[
                                    0].inputs["x"]
                                l.param_attr = {"perm": [0, 2, 3, 1]}
                                l.output = "nhwc_" + l.inputs.layer_name
                                true_node.fluid_code.layers[0].inputs[
                                    "x"] = l.output
                                true_node.fluid_code.layers.insert(0, l)
                            elif i == 1:
                                l = Layer()
                                l.op = "transpose"
                                l.inputs = true_node.fluid_code.layers[
                                    0].inputs["y"]
                                l.param_attr = {"perm": [0, 2, 3, 1]}
                                l.output = "nhwc_" + l.inputs.layer_name
                                true_node.fluid_code.layers[0].inputs[
                                    "y"] = l.output
                                true_node.fluid_code.layers.insert(0, l)
                            else:
                                raise Exception("Unexpected situation happend")
                    continue
                else:
                    for out_name in node.outputs:
                        out_node = self.graph.get_node(out_name)
                        if out_node.layer_type not in elementwise_ops:
                            assert out_node.fluid_code.layers[
                                0].op == "transpose", "unexpected situation happend"
                            out_node.fluid_code.layers[
                                1].inputs = out_node.fluid_code.layers[0].inputs
                            del out_node.fluid_code.layers[0]

    def make_nchw_input_output(self):
        for i, name in enumerate(self.graph.input_nodes):
            node = self.graph.get_node(name)
            if len(node.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
                shape = node.fluid_code.layers[0].param_attr["shape"]
                shape = [shape[i] for i in [0, 3, 1, 2]]
                node.fluid_code.layers[0].param_attr["shape"] = shape
                node.fluid_code.layers[0].output = "nhwc_" + name
                attr = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs="nhwc_" + name,
                                          output=node,
                                          param_attr=attr)
                self.graph.input_nodes[i] = "nhwc_" + name
        for i, name in enumerate(self.graph.output_nodes):
            node = self.graph.get_node(name)
            if node.layer_type != "transpose":
                if node.fluid_code.layers[-1].op == "transpose":
                    node.fluid_code.layers[-2].output = name
                    del node.fluid_code.layers[-1]
J
jiangjiajun 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

    def merge_batch_norm(self):
        for i, name in enumerate(self.graph.topo_sort):
            node = self.graph.get_node(name)
            if node is None:
                continue
            is_batch_norm = True
            if node.layer_type == "Add":
                in_nodes0 = [
                    self.graph.get_node(in_name) for in_name in node.inputs
                ]
                if in_nodes0[0].layer_type != "Mul" or in_nodes0[
                        1].layer_type != "Sub":
                    is_batch_norm = False
                    continue

                in_nodes1 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[0].inputs
                ]
                in_nodes2 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[1].inputs
                ]
                if len(in_nodes1[0].out_shapes[0]) != 4:
                    is_batch_norm = False
                    continue
                if in_nodes1[1].layer_type != "Mul":
                    is_batch_norm = False
                    continue

                if in_nodes2[0].layer_type != "Const" or in_nodes2[
                        1].layer_type != "Mul":
                    is_batch_norm = False
                    continue

                in_nodes3 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes1[1].inputs
                ]
                if in_nodes3[0].layer_type != "Rsqrt" or in_nodes3[
                        1].layer_type != "Const":
                    is_batch_norm = False
                    continue

                in_nodes4 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes2[1].inputs
                ]
                if in_nodes4[0].layer_type != "Const" or in_nodes4[
                        1].layer_name != in_nodes1[1].layer_name:
                    is_batch_norm = False
                    continue

                in_nodes5 = self.graph.get_node(in_nodes3[0].inputs[0])
                if in_nodes5.layer_type != "Add":
                    is_batch_norm = False
                    continue

                in_nodes6 = [
                    self.graph.get_node(in_name) for in_name in in_nodes5.inputs
                ]
                if in_nodes6[0].layer_type != "Const" or in_nodes6[
                        1].layer_type != "Const":
                    is_batch_norm = False
                    continue

J
jiangjiajun 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
                if len(in_nodes0[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes0[1].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes1[1].outputs) != 2:
                    is_batch_norm = False
                    continue
                if len(in_nodes2[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes2[1].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes3[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes3[1].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes4[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes5.outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes6[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes6[1].outputs) != 1:
                    is_batch_norm = False
                    continue

J
jiangjiajun 已提交
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
                conv_shape = in_nodes1[0].out_shapes[0]
                if conv_shape[3] < 0:
                    is_batch_norm = False
                    continue

                # moving_variance
                if in_nodes6[0].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                # epsilon
                if in_nodes6[1].value.size != 1:
                    is_batch_norm = False
                    continue

                # gamma
                if in_nodes3[1].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                # moving_mean
                if in_nodes4[0].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                # beta
                if in_nodes2[0].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                if is_batch_norm:
                    index = in_nodes1[0].outputs.index(in_nodes0[0].layer_name)
                    del in_nodes1[0].outputs[index]
                    node.layer_type = "FusedBatchNorm"
                    node.inputs = [in_nodes1[0].layer_name]
                    node.outputs = node.outputs
                    act = node.fluid_code.layers[-1].param_attr.get("act", None)
                    node.fluid_code.clear()
                    attr = {
                        "epsilon": in_nodes6[1].value,
                        "param_attr": string(in_nodes3[1].layer_name),
                        "bias_attr": string(in_nodes2[0].layer_name),
                        "moving_mean_name": string(in_nodes4[0].layer_name),
                        "moving_variance_name": string(in_nodes6[0].layer_name),
                        "is_test": True,
                        "act": act
                    }

J
jiangjiajun 已提交
504 505 506 507 508
                    node.fluid_code.add_layer(
                        "batch_norm",
                        inputs=in_nodes1[0].fluid_code.layers[-1].output,
                        output=node,
                        param_attr=attr)
J
jiangjiajun 已提交
509 510 511 512 513 514 515 516

                del self.graph.node_map[in_nodes0[0].layer_name]
                del self.graph.node_map[in_nodes0[1].layer_name]
                del self.graph.node_map[in_nodes1[1].layer_name]
                del self.graph.node_map[in_nodes2[1].layer_name]
                del self.graph.node_map[in_nodes3[0].layer_name]
                del self.graph.node_map[in_nodes4[0].layer_name]
                del self.graph.node_map[in_nodes5.layer_name]
J
jiangjiajun 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

    def merge_prelu(self):
        for i, name in enumerate(self.graph.topo_sort):
            node = self.graph.get_node(name)
            if node is None:
                continue
            is_prelu = True
            if node.layer_type == "Add":
                in_nodes0 = [
                    self.graph.get_node(in_name) for in_name in node.inputs
                ]
                if in_nodes0[0].layer_type != "Relu" or in_nodes0[
                        1].layer_type != "Mul":
                    is_prelu = False
                    continue
                if len(in_nodes0[0].outputs) != 1 or len(
                        in_nodes0[1].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes1 = self.graph.get_node(in_nodes0[0].inputs[0])
                in_nodes2 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[1].inputs
                ]
                if in_nodes2[1].layer_type != "Const" or numpy.fabs(
                        in_nodes2[1].value - 0.5) > 1e-06:
                    is_prelu = False
                    continue
                if in_nodes2[0].layer_type != "Mul":
                    is_prelu = False
                    continue
                if len(in_nodes2[1].outputs) != 1 or len(
                        in_nodes2[0].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes3 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes2[0].inputs
                ]
                if in_nodes3[0].layer_type != "Const" or in_nodes3[
                        1].layer_type != "Sub":
                    is_prelu = False
                    continue
                if len(in_nodes3[0].outputs) != 1 or len(
                        in_nodes3[1].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes4 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes3[1].inputs
                ]
                if in_nodes4[0].layer_name != in_nodes1.layer_name or in_nodes4[
                        1].layer_type != "Abs":
                    is_prelu = False
                    continue
                if len(in_nodes4[1].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes5 = self.graph.get_node(in_nodes4[1].inputs[0])
                if in_nodes5.layer_name != in_nodes1.layer_name:
                    is_prelu = False
                    continue

                if len(in_nodes0[0].outputs) != 1:
                    is_prelu = false
                    continue
                if len(in_nodes0[1].outputs) != 1:
                    is_prelu = False
                    continue
                if len(in_nodes1.outputs) < 3:
                    is_prelu = False
                    continue
                if len(in_nodes2[0].outputs) != 1:
                    is_prelu = false
                    continue
                if len(in_nodes2[1].outputs) != 1:
                    is_prelu = False
                    continue
                if len(in_nodes3[0].outputs) != 1:
                    is_prelu = False
                    continue
                if len(in_nodes3[1].outputs) != 1:
                    is_prelu = false
                    continue
                if len(in_nodes4[1].outputs) != 1:
                    is_prelu = False
                    continue

                mode = None
                in_shape = in_nodes1.out_shapes[0]
                if in_shape == list(in_nodes3[0].value.shape):
                    mode = "element"
                elif len(in_nodes3[0].value.shape) == 0:
                    mode = "all"
                elif len(in_nodes3[0].value.shape
                         ) == 1 and in_nodes3[0].value.shape[0] == 1:
                    mode = "all"
                elif len(in_shape) == 4 and len(
                        in_nodes3[0].value.shape
                ) == 1 and in_nodes3[0].value.shape[0] == in_shape[-1]:
                    mode = "channel"
                    weight = self.op_mapper.weights[in_nodes3[0].layer_name]
                    weight = numpy.expand_dims(weight, 0)
                    weight = numpy.expand_dims(weight, 2)
                    weight = numpy.expand_dims(weight, 3)
                    self.op_mapper.weights[in_nodes3[0].layer_name] = weight
                    in_nodes3[0].fluid_code.layers[0].param_attr["shape"] = [
                        1, in_shape[-1], 1, 1
                    ]
                else:
                    is_prelu = False
                    continue

                if is_prelu:
                    index = in_nodes1.outputs.index(in_nodes0[0].layer_name)
                    del in_nodes1.outputs[index]
                    index = in_nodes1.outputs.index(in_nodes3[1].layer_name)
                    del in_nodes1.outputs[index]
                    index = in_nodes1.outputs.index(in_nodes4[1].layer_name)
                    del in_nodes1.outputs[index]

                    node.layer_type = "Prelu"
                    node.inputs = [in_nodes1.layer_name]
                    node.outputs = node.outputs
                    act = node.fluid_code.layers[-1].param_attr.get("act", None)
                    node.fluid_code.clear()
                    attr = {
                        "mode": string(mode),
                        "param_attr": string(in_nodes3[0].layer_name)
                    }

                    node.fluid_code.add_layer(
                        "prelu",
                        inputs=in_nodes1.fluid_code.layers[-1].output,
                        output=node,
                        param_attr=attr)
                del self.graph.node_map[in_nodes0[0].layer_name]
                del self.graph.node_map[in_nodes0[1].layer_name]
                del self.graph.node_map[in_nodes2[0].layer_name]
                del self.graph.node_map[in_nodes2[1].layer_name]
                del self.graph.node_map[in_nodes3[1].layer_name]
                del self.graph.node_map[in_nodes4[1].layer_name]