tf_optimizer.py 4.2 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO useless node remove
J
jiangjiajun 已提交
16 17
from x2paddle.op_mapper.tf_op_mapper import TFOpMapper
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19


J
jiangjiajun 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33
class TFOptimizer(object):
    activation_ops = {
        'Relu': 'relu',
        'Sigmoid': 'sigmoid',
        'Relu6': 'relu6',
        'swish_f32': 'swish'
    }
    layers_with_act = [
        'Conv2D', 'BiasAdd', 'DepthwiseConv2dNative', 'Conv2DBackpropInput',
        'FusedBatchNorm'
    ]
    layers_with_bias = [
        'Conv2D', 'DepthwiseConv2dNative', 'Conv2DBackpropInput'
    ]
34

J
jiangjiajun 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def __init__(self, op_mapper):
        self.op_mapper = op_mapper
        self.graph = op_mapper.graph

    def delete_redundance_code(self):
        for node_name in self.graph.topo_sort:
            if node_name in self.op_mapper.omit_nodes:
                node = self.graph.get_node(node_name)
                omit_freq = self.op_mapper.omit_nodes.count(node_name)
                if len(node.outputs) <= omit_freq:
                    node.fluid_code.clear()

    # TODO activation merge
    def merge_activation(self):
        act_nodes = list()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            if node.layer_type in self.activation_ops:
                act_nodes.append(node_name)

        for act_node_name in act_nodes:
            node = self.graph.get_node(act_node_name)
            input = self.graph.get_node(node.inputs[0])
            if input.layer_type not in self.layers_with_act:
                continue
            if len(input.fluid_code.layers) == 0:
                continue
            if 'act' in input.fluid_code.layers[
                    -1].param_attr and input.fluid_code.layers[-1].param_attr[
                        'act'] is not None:
                continue
            if len(input.outputs) != 1:
                continue
            input.fluid_code.layers[-1].param_attr['act'] = string(
                self.activation_ops[node.layer_type])
            input.fluid_code.layers[-1].output = node.fluid_code.layers[
                0].output
            self.graph.remove_node(act_node_name)

    # TODO bias merge
    def merge_bias(self):
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            if node.layer_type == "BiasAdd":
                input = self.graph.get_node(node.inputs[0])
                if input.layer_type not in self.layers_with_bias:
                    continue
                if len(input.outputs) != 1:
                    continue
                if len(input.fluid_code.layers) == 0:
                    continue
                bias_with_act = False
                if 'act' in node.fluid_code.layers[-1].param_attr:
                    bias_with_act = True
                layer_with_act = False
                if 'act' in input.fluid_code.layers[
                        -1].param_attr and input.fluid_code.layers[
                            -1].param_attr['act'] is not None:
                    layer_with_act = True

                if bias_with_act and layer_with_act:
                    continue
                if not input.fluid_code.layers[-1].param_attr['bias_attr']:
                    bias_name = node.inputs[1]
                    input.fluid_code.layers[-1].param_attr[
                        'bias_attr'] = string(bias_name)
                    input.fluid_code.layers[-1].output = node.fluid_code.layers[
                        0].output
                    if bias_with_act:
                        input.fluid_code.layers[-1].param_attr[
                            'act'] = node.fluid_code.layers[-1].param_attr[
                                'act']
                    node.fluid_code.clear()