opset.py 52.1 KB
Newer Older
1
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
C
update  
channingss 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Channingss 已提交
15
from x2paddle.decoder.onnx_decoder import ONNXGraph, ONNXGraphNode, ONNXGraphDataNode
C
update  
channingss 已提交
16 17 18
from x2paddle.core.graph import GraphNode
from x2paddle.core.fluid_code import Layer
from x2paddle.core.fluid_code import FluidCode
C
channingss 已提交
19
from x2paddle.core.util import string
C
Channingss 已提交
20
from x2paddle.op_mapper.onnx2paddle.opset9.custom_layer import *
C
Channingss 已提交
21
from functools import reduce
C
update  
channingss 已提交
22
import numpy as np
C
channingss 已提交
23
import onnx
C
channingss 已提交
24
import onnx.numpy_helper as numpy_helper
C
channingss 已提交
25
from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE
C
update  
channingss 已提交
26
import logging as _logging
27
from collections import OrderedDict
C
channingss 已提交
28
import math
C
channingss 已提交
29 30
import os
import shutil
31

C
update  
channingss 已提交
32 33 34
_logger = _logging.getLogger(__name__)


C
Channingss 已提交
35
def _const_weight_or_none(node, necessary=False):
C
channings 已提交
36
    if 'Constant' in node.layer_type:
C
channingss 已提交
37
        return node.value
C
update  
channingss 已提交
38 39
    if isinstance(node, ONNXGraphDataNode):
        return node.weight
C
Channingss 已提交
40 41 42
    if necessary:
        assert '{} should be an initializer or Constant operator.'.format(
            node.layer_name)
C
update  
channingss 已提交
43 44 45
    return None


C
Channingss 已提交
46
def _get_same_padding(in_size, kernel_size, stride):
C
channingss 已提交
47 48 49 50 51 52 53
    new_size = int(math.ceil(in_size * 1.0 / stride))
    pad_size = (new_size - 1) * stride + kernel_size - in_size
    pad0 = int(pad_size / 2)
    pad1 = pad_size - pad0
    return [pad0, pad1]


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
def print_mapping_info(func):
    def run_mapping(*args, **kwargs):
        node = args[1]
        try:
            res = func(*args, **kwargs)
        except:
            print("convert failed node:{}, op_type is {}".format(
                node.layer_name[9:], node.layer_type))
            raise
        else:
            #print("convert successfully node:{}, op_type is {}".format(
            #    node.layer_name[9:], node.layer_type))
            return res

    return run_mapping


C
Channingss 已提交
71
class OpSet9():
72 73 74 75 76
    elementwise_ops = {
        'Add': 'elementwise_add',
        'Div': 'elementwise_div',
        'Sub': 'elementwise_sub',
        'Mul': 'elementwise_mul',
R
root 已提交
77 78
        'Pow': 'elementwise_pow',
    }
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    default_op_mapping_field_values = OrderedDict()
    default_op_mapping_field_values['FLUID_OP'] = ''
    default_op_mapping_field_values['FLUID_INPUT_ARGS'] = None
    default_op_mapping_field_values['FLUID_OUTPUT_ARGS'] = None
    default_op_mapping_field_values['ATTR_MAPPING'] = dict()
    default_op_mapping_field_values['DEFAULTS'] = dict()
    default_op_mapping_field_values['INPUT_PERM'] = None
    default_op_mapping_field_values['OUTPUT_PERM'] = None
    default_op_mapping_field_values['FILL_NAME_FIELD'] = True

    default_op_mapping = {
        'Shape': ['shape', ['X'], ['Out']],
        'Clip': [
            'clip', ['X'], ['Out'], dict(), dict(
                min=(np.asarray(
                    [255, 255, 127, 255], dtype=np.uint8).view(np.float32)[0]),
                max=(np.asarray(
                    [255, 255, 127, 127], dtype=np.uint8).view(np.float32)[0]),
            )
        ],
        'Erf': ['erf', ['X'], ['Out']],
        'Ceil': ['ceil', ['X'], ['Out']],
        'ReduceMean': [
            'reduce_mean', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceSum': [
            'reduce_sum', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
        'ReduceMin': [
            'reduce_min', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
C
Channingss 已提交
114 115 116 117
        'ReduceMax': [
            'reduce_max', ['X'], ['Out'], dict(
                axes='dim', keepdims='keep_dim'), dict(keep_dim=1)
        ],
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        #active function
        'Relu': ['relu', ['X'], ['Out']],
        'LeakyRelu': ['leaky_relu', ['X'], ['Out'], dict(), dict(alpha=.01)],
        'Elu': ['elu', ['X'], ['Out'], dict(), dict(alpha=1.)],
        'ThresholdedRelu': [
            'thresholded_relu', ['X'], ['Out'], dict(alpha='threshold'),
            dict(alpha=1.)
        ],
        'Tanh': ['tanh', ['X'], ['Out']],
        'Sigmoid': ['sigmoid', ['X'], ['Out']],
        'HardSigmoid': [
            'hard_sigmoid', ['X'], ['Out'], dict(
                alpha='slope', beta='offset'), dict(
                    slope=.2, offset=.5)
        ],
        'Softsign': ['softsign', ['X'], ['Out']],
        'Softplus': ['softplus', ['X'], ['Out']],
        'Exp': ['exp', ['X'], ['Out']],
        'Softmax': ['softmax', ['X'], ['Out'], dict(), dict(axis=1)],
        'Sqrt': ['sqrt', ['X'], ['Out']],
        'Floor': ['floor', ['X'], ['Out']],
        'Abs': ['abs', ['X'], ['Out']],
    }

C
Channingss 已提交
142
    default_ioa_constraint = {}
143 144

    def __init__(self, decoder):
C
Channingss 已提交
145
        super(OpSet9, self).__init__()
146
        self.graph = decoder.graph
C
update  
channingss 已提交
147 148 149
        self.input_shapes = []
        self.weights = dict()
        self.omit_nodes = list()
C
channingss 已提交
150
        self.used_custom_layers = dict()
R
root 已提交
151

152
    @print_mapping_info
C
channingss 已提交
153
    def directly_map(self, node, name='', *args, **kwargs):
C
update  
channingss 已提交
154 155 156 157
        inputs = node.layer.input
        outputs = node.layer.output
        op_type = node.layer_type
        attrs = node.attr_map
158 159 160
        info = self.default_op_mapping[op_type]
        info.extend(
            list(self.default_op_mapping_field_values.values())[len(info):])
C
update  
channingss 已提交
161 162 163 164 165 166 167 168
        (
            fluid_op,
            fluid_input_args,
            fluid_output_args,
            attr_mapping,
            default_attrs,
            input_perm,
            output_perm,
169
            fill_name_field, ) = info
C
update  
channingss 已提交
170

171 172
        if fluid_op in self.default_ioa_constraint:
            for predicate, message in self.default_ioa_constraint[fluid_op]:
C
update  
channingss 已提交
173 174 175 176 177 178 179 180 181 182 183 184
                assert predicate(inputs, outputs, attrs), message

        mapped_attrs = {
            attr_mapping.get(key, key): value
            for key, value in attrs.items()
        }
        if '' in mapped_attrs:
            mapped_attrs.pop('')
        if '_' in mapped_attrs:
            mapped_attrs.pop('_')
        fluid_attrs = default_attrs.copy()
        fluid_attrs.update(mapped_attrs)
C
channingss 已提交
185
        inputs = inputs if input_perm is None else list(
C
update  
channingss 已提交
186
            map(lambda i: inputs[i], input_perm))
C
channingss 已提交
187 188 189 190
        val_inps = []
        for idx, ipt in enumerate(inputs):
            val_inps.append(self.graph.get_input_node(node, idx=idx, copy=True))

C
update  
channingss 已提交
191 192 193
        val_outs = outputs if output_perm is None else list(
            map(lambda i: outputs[i], output_perm))
        attr = fluid_attrs
C
channingss 已提交
194
        assert len(val_inps) == 1, 'directly_map error with multi inputs'
195
        if fluid_op not in ['shape', 'erf']:
C
update  
channingss 已提交
196
            attr['name'] = string(node.layer_name)
197 198 199 200 201 202 203 204 205 206
        node.fluid_code.add_layer(
            fluid_op, inputs=val_inps[0], output=val_outs[0], param_attr=attr)
        if fluid_op in ['shape']:
            node.fluid_code.add_layer(
                'cast',
                inputs=val_outs[0],
                output=val_outs[0],
                param_attr={'dtype': string('int64')})

    @print_mapping_info
C
channingss 已提交
207 208 209
    def deal_custom_layer(self, node):
        op = node.layer_type
        custom_code, func = make_custom_layer(node)
C
channingss 已提交
210
        child_func_code, child_func = make_custom_child_func(node)
C
channingss 已提交
211 212 213
        params = get_params(node.layer, node.layer_type)
        arg_names, kwargs = set_args(func, params)
        kwargs['name'] = string(node.layer_name)
214 215 216 217 218 219
        node.fluid_code.add_layer(
            func.__code__.co_name,
            inputs=node.inputs,
            output=node,
            param_attr=kwargs,
            is_custom_layer=True)
C
channingss 已提交
220 221
        if op not in self.used_custom_layers:
            self.used_custom_layers[op] = custom_code
C
channingss 已提交
222
            if op + '_child_func' not in self.used_custom_layers:
C
channingss 已提交
223 224 225
                if child_func_code is not None:
                    self.used_custom_layers[op +
                                            '_child_func'] = child_func_code
R
root 已提交
226

227
    @print_mapping_info
228 229 230
    def elementwise_map(self, node):
        assert node.layer_type in self.elementwise_ops
        op_type = self.elementwise_ops[node.layer_type]
R
root 已提交
231

232 233 234 235
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        val_y_shape = val_y.out_shapes[0]
        val_x_shape = val_x.out_shapes[0]
R
root 已提交
236 237

        if len(val_x_shape) < len(val_y_shape):
238
            val_x, val_y = val_y, val_x
239
            val_y_shape, val_x_shape = val_x_shape, val_y_shape
240 241 242

        str_y_shape = ','.join(str(e) for e in val_y_shape)
        str_x_shape = ','.join(str(e) for e in val_x_shape)
243
        slice_idx = 0
244 245 246 247 248 249
        if str_y_shape not in str_x_shape:
            for dim in val_y_shape:
                if dim == 1:
                    slice_idx += 1
                else:
                    break
250 251 252 253 254 255 256 257
        attr = {"name": string(node.layer_name)}
        if slice_idx < len(val_y_shape) and slice_idx > 0:
            val_y_reshaped = val_y_shape[slice_idx:]
            var_y_reshaped = val_y.layer_name + '_reshaped'
            attr_reshaped = {
                'shape': val_y_reshaped,
                'name': string(var_y_reshaped)
            }
258 259 260 261 262
            node.fluid_code.add_layer(
                'reshape',
                inputs=val_y,
                output=var_y_reshaped,
                param_attr=attr_reshaped)
263
            inputs = {'x': val_x, 'y': var_y_reshaped}
264 265
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
266 267
        else:
            inputs = {'x': val_x, 'y': val_y}
268 269
            node.fluid_code.add_layer(
                op_type, inputs=inputs, output=node, param_attr=attr)
C
channingss 已提交
270

271
    @print_mapping_info
C
update  
channingss 已提交
272
    def place_holder(self, node):
C
channingss 已提交
273
        self.input_shapes.append(node.out_shapes[0])
R
root 已提交
274

C
channings 已提交
275 276
        shape = node.out_shapes[0]
        for i, dim_shape in enumerate(shape):
R
root 已提交
277 278 279
            if dim_shape == 0 and i == 0:
                shape[i] = 1
            if dim_shape == 0 and i != 0:
C
channings 已提交
280
                assert 'shape of input is not assigned'
C
update  
channingss 已提交
281 282
        attr = {
            "dtype": string(node.dtype),
C
channings 已提交
283
            "shape": shape,
C
update  
channingss 已提交
284 285 286 287
            "name": string(node.layer_name),
            "append_batch_size": 'False'
        }

288 289
        node.fluid_code.add_layer(
            "data", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
290

291
    @print_mapping_info
C
update  
channingss 已提交
292 293 294 295
    def create_parameter(self, node, parameter=None):
        if parameter is not None:
            node = parameter
        dtype = node.dtype
C
channingss 已提交
296
        shape = node.out_shapes[0]
C
channingss 已提交
297 298
        if len(node.weight.shape) == 0:
            shape = [1]
C
update  
channingss 已提交
299 300 301 302 303 304 305
        self.weights[node.layer_name] = node.weight
        attr = {
            'dtype': string(dtype),
            'shape': shape,
            'name': string(node.layer_name),
            'default_initializer': 'Constant(0.0)'
        }
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
        if dtype == 'bool':
            attr['dtype'] = string('int64')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
            node.fluid_code.add_layer(
                "cast",
                inputs=node,
                output=node,
                param_attr={'dtype': string('bool')})
        elif dtype == 'uint8':
            attr['dtype'] = string('float32')
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
        else:
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335

    def _pad_if_asymmetric(self, node, pads, val_name):  # pads: SSEE
        assert len(pads) & 1 == 0
        symmetric = True
        ndims = len(pads) // 2
        for idx_dim in range(ndims):
            if pads[idx_dim] != pads[ndims + idx_dim]:
                symmetric = False
                break
        if symmetric:
            return pads[:ndims], val_name
        val_padded = self.Pad(node, op_independent=False)
        return [0] * ndims, val_padded

C
channingss 已提交
336
    def _interpolate(self, node):
C
channingss 已提交
337
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
Channingss 已提交
338
        inputs = {'input': val_x}
339
        if node.layer_type == 'Resize':
C
Channingss 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            if len(node.layer.input) == 2:
                # opset 10
                val_scales = self.graph.get_input_node(node, idx=1, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 3:
                # opset 11
                val_scales = self.graph.get_input_node(node, idx=2, copy=True)
                inputs['scale'] = val_scales
            elif len(node.layer.input) == 4:
                # opset 11
                val_sizes = self.graph.get_input_node(node, idx=3, copy=True)
                var_nc, var_hw = val_sizes.layer_name + '_nc', val_sizes.layer_name + '_hw'
                node.fluid_code.add_layer(
                    'split',
                    inputs=val_sizes,
                    output=var_nc + ',' + var_hw,
                    param_attr={
                        'dim': 0,
                        'num_or_sections': [2, 2],
                    })
                node.fluid_code.add_layer(
                    "cast",
                    inputs=var_hw,
                    output=var_hw,
                    param_attr={'dtype': string('int32')})
                inputs['out_shape'] = var_hw
366 367
        elif node.layer_type == 'Upsample':
            val_scales = self.graph.get_input_node(node, idx=1, copy=True)
C
Channingss 已提交
368
            inputs['scale'] = val_scales
R
root 已提交
369 370

        attr = {'name': string(node.layer_name)}
C
channingss 已提交
371 372
        mode = node.get_attr('mode', 'nearest')
        fluid_op = 'resize_{}'.format(mode)
373
        if 'linear' in mode:
R
root 已提交
374 375 376
            print(
                'Warnning: paddle not support op:resize wiht mode: linear, we use bilinear replace linear'
            )
377
            fluid_op = 'resize_bilinear'
378
        node.fluid_code.add_layer(
C
Channingss 已提交
379
            fluid_op, inputs=inputs, output=node, param_attr=attr)
R
root 已提交
380

381
    @print_mapping_info
C
channings 已提交
382 383 384
    def RoiAlign(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
385 386 387

        pooled_height = node.get_attr('output_height')
        pooled_width = node.get_attr('output_width')
C
channings 已提交
388 389 390
        spatial_scale = node.get_attr('spatial_scale')
        sampling_ratio = node.get_attr('sampling_ratio')
        attr = {
R
root 已提交
391 392 393 394 395
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
            'sampling_ratio': sampling_ratio,
        }
396 397 398 399 400 401 402 403
        node.fluid_code.add_layer(
            'roi_align',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
channings 已提交
404 405 406
    def MaxRoiPool(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_rois = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
407

C
channings 已提交
408 409 410
        spatial_scale = node.get_attr('spatial_scale')
        pooled_height, pooled_width = node.get_attr('pooled_shape')
        attr = {
R
root 已提交
411 412 413 414
            'pooled_height': pooled_height,
            'pooled_width': pooled_width,
            'spatial_scale': spatial_scale,
        }
415 416 417 418 419 420 421 422
        node.fluid_code.add_layer(
            'roi_pool',
            inputs={'input': val_x,
                    'rois': val_rois},
            output=node,
            param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
423
    def Pad(self, node, op_independent=True):
C
channingss 已提交
424
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
425 426 427
        pads = node.get_attr('pads')
        mode = node.get_attr('mode', 'constant')
        value = node.get_attr('value', 0.)
C
channingss 已提交
428 429
        data_shape = val_x.out_shapes[0]
        output_shape = node.out_shapes[0]
C
update  
channingss 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
        assume_pad2d = False
        attr = {}
        if len(pads) == 4:
            assume_pad2d |= mode != 'constant'
            if data_shape:
                assume_pad2d |= data_shape and len(data_shape) == 4  # NCHW
            if output_shape:
                assume_pad2d |= output_shape and len(output_shape) == 4  # NCHW
        if assume_pad2d:
            fluid_op = 'pad2d'
            attr['data_format'] = string('NCHW')
            attr['mode'] = string(mode)
        else:
            attr = {'pad_value': value}
            fluid_op = 'pad'
        if len(pads) == 4:
            paddings = np.array(pads).reshape(
                (-1, 2)).transpose().flatten().tolist()  # SSEE -> SESE
        elif len(pads) == 8:
            paddings = np.array(pads).reshape(
                (-1, 4)).transpose().flatten().tolist()  # SSEE -> SESE
C
channingss 已提交
451 452 453 454
            if sum(paddings[:4]) == 0:
                fluid_op = 'pad2d'
                paddings = paddings[4:]
                attr['mode'] = string(mode)
C
update  
channingss 已提交
455 456 457
        attr['paddings'] = paddings
        if op_independent:
            attr['name'] = string(node.layer_name)
458 459
            node.fluid_code.add_layer(
                fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
460 461
        else:
            attr['name'] = string(node.layer_name + '_paded')
462 463 464 465 466
            node.fluid_code.add_layer(
                fluid_op,
                inputs=val_x,
                output=node.layer_name + '_paded',
                param_attr=attr)
C
update  
channingss 已提交
467 468
            return node.layer_name + '_paded'

469
    @print_mapping_info
C
update  
channingss 已提交
470
    def Unsqueeze(self, node):
C
channingss 已提交
471
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
472
        axes = node.get_attr('axes')
473
        attr = {'axes': axes, 'name': string(node.layer_name)}
R
root 已提交
474
        if len(val_x.out_shapes[0]) == 0:
475 476 477 478 479 480
            if node.layer_name:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_x,
                    output=node,
                    param_attr={'shape': [1]})
481
        else:
482 483
            node.fluid_code.add_layer(
                'unsqueeze', inputs=val_x, output=node, param_attr=attr)
484

485
    @print_mapping_info
C
channingss 已提交
486
    def Shrink(self, node):
C
channingss 已提交
487
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
488 489 490 491
        bias = node.get_attr('bias')
        lambd = node.get_attr('lambd')
        assert bias == 0.0, 'not support bias!=0'
        attr = {'threshold': lambd, 'name': node.layer_name}
492 493
        node.fluid_code.add_layer(
            'hard_shrink', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
494

495 496 497 498 499 500 501 502 503 504 505
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            'greater_than',
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
C
update  
channingss 已提交
506 507 508 509 510 511 512 513
    def Constant(self, node):
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        value = node.get_attr('value')
        dtype = np.dtype(value.dtype)
        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'tensor dtype unmatches storage dtype'
R
root 已提交
514

C
update  
channingss 已提交
515
        shape = node.get_attr('shape', None)
R
root 已提交
516

C
update  
channingss 已提交
517
        if shape is None:
C
channingss 已提交
518
            shape = val_output.out_shapes[0]
C
update  
channingss 已提交
519 520
        if shape is None:
            shape = list(value.shape)
521 522 523 524
            _logger.warning('in (Constant -> %s): '
                            'attribute "shape" of %s not inferred, '
                            'using value as 1-D tensor may lead to fails',
                            val_output.layer_name, val_output.layer_name)
525
        if len(value) == 1:
C
channingss 已提交
526
            value = value.tolist()
C
update  
channingss 已提交
527 528 529 530 531
            shape = [1]
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
            attr = {'shape': shape, 'dtype': string(dtype), 'value': value}
532 533
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
channingss 已提交
534
        else:
535 536
            if dtype.name == 'uint8':
                dtype = 'int64'
C
channingss 已提交
537 538 539 540 541 542 543 544
            value = np.reshape(value, shape)
            self.weights[node.layer_name] = value
            attr = {
                'dtype': string(dtype),
                'shape': shape,
                'name': string(node.layer_name),
                'default_initializer': 'Constant(0.0)'
            }
545 546
            node.fluid_code.add_layer(
                "create_parameter", inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
547

548
    @print_mapping_info
C
update  
channingss 已提交
549
    def Resize(self, node):
550 551
        self._interpolate(node)

552
    @print_mapping_info
553 554 555
    def Upsample(self, node):
        self._interpolate(node)

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    @print_mapping_info
    def InstanceNormalization(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        epsilon = node.get_attr('epsilon', 1e-5)
        attr = {
            'epsilon': epsilon,
            'param_attr': string(val_scale.layer_name),
            'bias_attr': string(val_b.layer_name)
        }
        node.fluid_code.add_layer(
            "instance_norm", inputs=val_x, output=node, param_attr=attr)

    @print_mapping_info
571
    def Expand(self, node):
C
channingss 已提交
572
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
573
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
R
root 已提交
574 575

        if len(val_shape.outputs) == 1:
576 577
            self.omit_nodes.append(val_shape.layer_name)

C
channingss 已提交
578
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
579
        out_shape = node.out_shapes[0]
580
        val_x_dtype = val_x.dtype
R
root 已提交
581 582 583

        name_ones = node.layer_name + '_ones'
        attr_ones = {'shape': out_shape, 'dtype': string(val_x_dtype)}
584 585
        node.fluid_code.add_layer(
            'ones', inputs=None, output=name_ones, param_attr=attr_ones)
R
root 已提交
586 587
        inputs = {'x': name_ones, 'y': val_x}
        attr = {'name': string(node.layer_name)}
588 589 590 591 592
        node.fluid_code.add_layer(
            'elementwise_mul',
            inputs=inputs,
            output=node.layer_name,
            param_attr=attr)
C
update  
channingss 已提交
593

594
    @print_mapping_info
C
channingss 已提交
595 596 597 598
    def Gather(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        indices = self.graph.get_input_node(node, idx=1, copy=True)
        indices_shape = indices.out_shapes[0]
C
Channingss 已提交
599
        axis = node.get_attr('axis', 0)
600 601
        #assert len(
        #    indices_shape) <= 2, "Gather op don't support dim of indice >2 "
R
root 已提交
602
        if axis == 0 and len(indices_shape) <= 1:
603 604 605 606 607 608
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': val_x,
                        'index': indices},
                output=node,
                param_attr=None)
C
channingss 已提交
609 610
        elif axis > 0 and len(indices_shape) <= 1:
            perm = list(range(len(val_x.out_shapes[0])))
C
channingss 已提交
611 612 613
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
        elif axis == 0 and len(indices_shape) > 1:
            if val_x.out_shapes[0] is not None and isinstance(
                    val_x, ONNXGraphDataNode):
                node.fluid_code.add_layer(
                    'embedding',
                    inputs=indices,
                    output=node,
                    use_fluid=True,
                    param_attr={
                        'param_attr': string(val_x.layer_name),
                        'size': val_x.out_shapes[0]
                    })
            else:
                from functools import reduce
                #indices_shape = [1,7]
                reshape_shape = reduce(lambda x, y: x * y, indices_shape)
                indices_reshape = indices.layer_name + '_shape'
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=indices,
                    output=indices_reshape,
                    param_attr={'shape': [reshape_shape, ]})

                perm = list(range(len(val_x.out_shapes[0])))
                node.fluid_code.add_layer(
                    'gather',
                    inputs={'input': val_x,
                            'index': indices_reshape},
                    output=node,
                    param_attr=None)
                val_x_shape = val_x.out_shapes[0]
                reshaped_shape = []
                for i in perm:
                    reshaped_shape.append(indices_shape[i])
                for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                    reshaped_shape.append(i)
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=node,
                    output=node,
                    param_attr={'shape': reshaped_shape})
        elif axis > 0 and len(indices_shape) > 1:
C
Channingss 已提交
669
            from functools import reduce
R
root 已提交
670
            reshape_shape = reduce(lambda x, y: x * y, indices_shape)
671 672 673 674 675 676
            indices_reshape = indices.layer_name + '_shape'
            node.fluid_code.add_layer(
                'reshape',
                inputs=indices,
                output=indices_reshape,
                param_attr={'shape': [reshape_shape, ]})
R
root 已提交
677

C
Channingss 已提交
678 679 680 681
            perm = list(range(len(val_x.out_shapes[0])))
            perm = [axis] + perm[:axis] + perm[axis + 1:]
            attr_trans = {'perm': perm}
            name_trans = val_x.layer_name + '_trans'
682 683 684 685 686 687 688 689 690 691 692 693 694
            node.fluid_code.add_layer(
                'transpose',
                inputs=val_x,
                output=name_trans,
                param_attr=attr_trans)
            node.fluid_code.add_layer(
                'gather',
                inputs={'input': name_trans,
                        'index': indices_reshape},
                output=node,
                param_attr=None)
            node.fluid_code.add_layer(
                'transpose', inputs=node, output=node, param_attr=attr_trans)
C
Channingss 已提交
695 696 697 698 699 700
            val_x_shape = val_x.out_shapes[0]
            reshaped_shape = []
            for i in perm:
                reshaped_shape.append(indices_shape[i])
            for i in val_x_shape[:axis] + val_x_shape[axis + 1:]:
                reshaped_shape.append(i)
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
            node.fluid_code.add_layer(
                'reshape',
                inputs=node,
                output=node,
                param_attr={'shape': reshaped_shape})

    @print_mapping_info
    def Range(self, node):
        val_start = self.graph.get_input_node(node, idx=0, copy=True)
        val_limit = self.graph.get_input_node(node, idx=1, copy=True)
        val_delta = self.graph.get_input_node(node, idx=2, copy=True)
        dtype = val_start.dtype
        inputs = {'start': val_start, 'end': val_limit, 'step': val_delta}
        node.fluid_code.add_layer(
            'range',
            inputs=inputs,
            output=node,
            param_attr={'dtype': string(dtype)})

    @print_mapping_info
C
channingss 已提交
721
    def Slice(self, node):
C
channingss 已提交
722
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channings 已提交
723
        starts, ends, axes, steps = None, None, None, None
724
        attr = {}
C
channingss 已提交
725 726 727
        if len(node.inputs) > 1:
            starts = self.graph.get_input_node(node, idx=1, copy=True)
            ends = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
728
            if len(node.inputs) > 3:
C
channings 已提交
729
                axes = self.graph.get_input_node(node, idx=3, copy=True)
C
Channingss 已提交
730
                axes = _const_weight_or_none(axes, necessary=True)
R
root 已提交
731
            if len(node.inputs) > 4:
C
channings 已提交
732
                steps = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
Channingss 已提交
733
                steps = _const_weight_or_none(steps)
734 735 736 737 738 739 740
                if steps is not None:
                    assert steps == 1, "Only support convert op:Slice, which attribute:steps == 1"
            attr = {
                "axes": axes,
                "starts": starts.layer_name,
                "ends": ends.layer_name
            }
C
update  
Channingss 已提交
741 742
            starts_value = _const_weight_or_none(starts)
            ends_value = _const_weight_or_none(ends)
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
            if starts_value is not None and ends_value is not None:
                self.omit_nodes.append(starts.layer_name)
                self.omit_nodes.append(ends.layer_name)
                ends_value = ends_value.copy()
                for idx in range(len(ends_value)):
                    if ends_value[idx] > 2**31 - 1:
                        ends_value[idx] = 2**31 - 1
                attr = {
                    "axes": axes,
                    "starts": starts_value,
                    "ends": ends_value
                }
            else:
                if starts.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=starts,
                        output=starts,
                        param_attr={'dtype': string('int32')})
                if ends.dtype != 'int32':
                    node.fluid_code.add_layer(
                        'cast',
                        inputs=ends,
                        output=ends,
                        param_attr={'dtype': string('int32')})
C
channingss 已提交
768 769 770 771
        else:
            starts = node.get_attr('starts')
            ends = node.get_attr('ends')
            axes = node.get_attr('axes')
772 773 774 775
            for idx in range(len(ends)):
                if ends[idx] > 2**31 - 1:
                    ends[idx] = 2**31 - 1
            attr = {"axes": axes, "starts": starts, "ends": ends}
C
channingss 已提交
776

777 778
        node.fluid_code.add_layer(
            'slice', inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
779

780
    @print_mapping_info
C
update  
channingss 已提交
781
    def ConstantOfShape(self, node):
C
channingss 已提交
782
        val_shape = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
783
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
784 785 786 787

        value = node.get_attr('value')
        dtype = value.dtype
        value = value.tolist()
788 789
        assert len(value) == 1, ('given value not Scalar, shape of value > 1, '
                                 'this is not supported')
C
update  
channingss 已提交
790 791 792 793
        if len(value) == 1:
            value = value[0]
            if dtype.name == 'int64':
                dtype = 'int32'
794 795 796 797 798 799 800
            attr = {
                'shape': val_shape.layer_name,
                'dtype': string(dtype),
                'value': value
            }
            node.fluid_code.add_layer(
                'fill_constant', inputs=None, output=node, param_attr=attr)
C
update  
channingss 已提交
801

802
    @print_mapping_info
C
update  
channingss 已提交
803
    def Split(self, node):
C
channingss 已提交
804 805
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
C
update  
channingss 已提交
806 807

        fluid_op = 'split'
C
channingss 已提交
808
        split = node.get_attr('split')
C
update  
channingss 已提交
809
        axis = node.get_attr('axis', 0)
C
channingss 已提交
810 811 812 813 814
        attr = {
            'num_or_sections': split,
            'dim': axis,
            'name': string(node.layer_name)
        }
R
root 已提交
815

816 817
        node.fluid_code.add_layer(
            'split', inputs=val_x, output=val_y, param_attr=attr)
C
update  
channingss 已提交
818

819
    @print_mapping_info
C
update  
channingss 已提交
820
    def Reshape(self, node):
C
channingss 已提交
821 822
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_shape = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
823
        val_reshaped = self.graph.get_node(node.layer.output[0], copy=True)
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
        attr = {}
        shape_value = _const_weight_or_none(val_shape)
        shape_dims = len(val_shape.out_shapes[0])

        if shape_value is not None:
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x},
                output=node,
                param_attr={'shape': shape_value.tolist()})
        elif val_shape.dtype == 'int64':
            val_shape_cast = val_shape.layer_name + '_cast'
            node.fluid_code.add_layer(
                'cast',
                inputs=val_shape,
                output=val_shape_cast,
                param_attr={'dtype': string('int32')})
841 842 843 844 845 846 847
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape_cast,
                    output=val_shape_cast,
                    param_attr={'shape': val_shape.out_shapes[0]})
848 849 850 851 852 853 854
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape_cast},
                output=node,
                param_attr=attr)
        else:
855 856 857 858 859 860 861
            # shape may be [], come form Gather by scalar indices
            if len(val_shape.out_shapes[0]) > 0:
                node.fluid_code.add_layer(
                    'reshape',
                    inputs=val_shape,
                    output=val_shape,
                    param_attr={'shape': val_shape.out_shapes[0]})
862 863 864 865 866 867 868 869
            node.fluid_code.add_layer(
                'reshape',
                inputs={'x': val_x,
                        'shape': val_shape},
                output=node,
                param_attr=attr)

    @print_mapping_info
C
update  
channingss 已提交
870
    def Cast(self, node):
C
channingss 已提交
871
        val_input = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
872 873 874 875 876 877 878 879 880 881
        val_output = self.graph.get_node(node.layer.output[0], copy=True)

        dtype = node.get_attr('to')
        if not isinstance(dtype, np.dtype):
            dtype = TENSOR_TYPE_TO_NP_TYPE[dtype]

        output_dtype = val_output.dtype
        if output_dtype:
            assert dtype == output_dtype, 'dtype of to unmatches output'
        attr = {'dtype': string(dtype)}
882 883
        node.fluid_code.add_layer(
            'cast', inputs=val_input, output=node, param_attr=attr)
C
update  
channingss 已提交
884

885
    @print_mapping_info
C
update  
channingss 已提交
886
    def AveragePool(self, node):
C
channingss 已提交
887
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
888 889

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
890 891 892 893 894 895 896 897
        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))
        pads = node.get_attr('pads', [0] * (poolnd * 2))
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
898

C
channingss 已提交
899 900
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
901
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
902
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
903 904 905 906 907
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
908

C
update  
channingss 已提交
909 910 911 912 913 914 915 916 917 918
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string('avg'),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "exclusive": 'True',
            "name": string(node.layer_name)
        }

919 920
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
921

922
    @print_mapping_info
C
update  
channingss 已提交
923 924 925
    def Concat(self, node):
        inputs = []
        for i in range(len(node.layer.input)):
C
channingss 已提交
926
            ipt = self.graph.get_input_node(node, idx=i, copy=True)
C
update  
channingss 已提交
927 928 929 930 931 932
            if isinstance(ipt, str):
                inputs.append(ipt)
            else:
                inputs.append(ipt.layer_name)
        axis = node.get_attr('axis')
        attr = {'axis': axis}
933 934
        node.fluid_code.add_layer(
            'concat', inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
935

936
    @print_mapping_info
C
update  
channingss 已提交
937
    def Flatten(self, node):
C
channingss 已提交
938
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
939 940
        axis = node.get_attr('axis', 1)
        attr = {"axis": str(axis), "name": string(node.layer_name)}
941 942
        node.fluid_code.add_layer(
            'flatten', inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
943

944
    @print_mapping_info
C
update  
channingss 已提交
945
    def Gemm(self, node):
C
channingss 已提交
946 947 948
        val_a = self.graph.get_input_node(node, idx=0, copy=True)
        val_b = self.graph.get_input_node(node, idx=1, copy=True)
        val_c = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
949 950 951 952 953 954 955 956 957 958 959 960 961

        alpha = node.get_attr('alpha', 1.)  # optional
        beta = node.get_attr('beta', 1.)  # optional
        trans_a = bool(node.get_attr('transA', 0))  # optional
        trans_b = bool(node.get_attr('transB', 0))  # optional
        val_mm = node.layer_name + '_mm'
        matmul_inputs = {"x": val_a, "y": val_b}
        attr_matmul = {
            "transpose_x": trans_a,
            "transpose_y": trans_b,
            "alpha": alpha,
            "name": string(val_mm)
        }
962 963 964 965 966
        node.fluid_code.add_layer(
            'matmul',
            inputs=matmul_inputs,
            output=val_mm,
            param_attr=attr_matmul)
C
channingss 已提交
967

C
update  
channingss 已提交
968 969 970 971
        if beta != 0:
            if beta == 1.:
                add_inputs = {"x": val_mm, "y": val_c}
                attr = {"name": string(node.layer_name)}
972 973 974 975 976
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
977
            else:
C
channingss 已提交
978 979
                var_beta = node.layer_name + '_beta'
                matmul_beta_inputs = {"x": val_c, "y": var_beta}
980 981 982 983 984
                node.fluid_code.add_layer(
                    "Constant",
                    inputs=matmul_beta_inputs,
                    output=var_beta,
                    param_attr={'value': beta})
C
channingss 已提交
985 986 987

                add_inputs = {"x": val_mm, "y": var_beta}
                attr = {"name": string(node.layer_name)}
988 989 990 991 992
                node.fluid_code.add_layer(
                    "elementwise_add",
                    inputs=add_inputs,
                    output=node,
                    param_attr=attr)
C
update  
channingss 已提交
993

994
    @print_mapping_info
C
update  
channingss 已提交
995
    def Sum(self, node):
996
        val_inps = node.layer.input
997
        inputs = {
998 999 1000 1001
            "x": self.graph.get_input_node(
                node, idx=0, copy=True),
            "y": self.graph.get_input_node(
                node, idx=1, copy=True),
1002 1003
        }
        node.fluid_code.add_layer("elementwise_add", inputs=inputs, output=node)
1004

C
channingss 已提交
1005 1006
        for idx, ipt in enumerate(val_inps[2:]):
            y = self.graph.get_input_node(node, idx=idx, copy=True)
1007 1008
            inputs = {
                "x": node.layer_name,
C
channingss 已提交
1009
                "y": y,
1010
            }
1011 1012
            node.fluid_code.add_layer(
                "elementwise_add", inputs=inputs, output=node)
C
update  
channingss 已提交
1013

1014
    @print_mapping_info
C
update  
channingss 已提交
1015
    def MatMul(self, node):
C
channingss 已提交
1016 1017
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1018 1019
        inputs = {"x": val_x, "y": val_y}
        attr = {"name": string(node.layer_name)}
1020 1021
        node.fluid_code.add_layer(
            "matmul", inputs=inputs, output=node, param_attr=attr)
C
update  
channingss 已提交
1022

1023
    @print_mapping_info
C
update  
channingss 已提交
1024
    def BatchNormalization(self, node):
C
channingss 已提交
1025 1026 1027 1028 1029
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_scale = self.graph.get_input_node(node, idx=1, copy=True)
        val_b = self.graph.get_input_node(node, idx=2, copy=True)
        val_mean = self.graph.get_input_node(node, idx=3, copy=True)
        val_var = self.graph.get_input_node(node, idx=4, copy=True)
C
update  
channingss 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038

        self.omit_nodes.append(val_scale.layer_name)
        self.omit_nodes.append(val_b.layer_name)
        self.omit_nodes.append(val_mean.layer_name)
        self.omit_nodes.append(val_var.layer_name)

        momentum = node.get_attr('momentum', .9)
        epsilon = node.get_attr('epsilon', 1e-5)

C
channingss 已提交
1039 1040
        # Attribute: spatial is used in BatchNormalization-1,6,7
        spatial = bool(node.get_attr('spatial'))
C
update  
channingss 已提交
1041 1042 1043 1044
        attr = {
            "momentum": momentum,
            "epsilon": epsilon,
            "data_layout": string('NCHW'),
C
channingss 已提交
1045
            "is_test": True,
C
update  
channingss 已提交
1046 1047 1048 1049
            "param_attr": string(val_scale.layer_name),
            "bias_attr": string(val_b.layer_name),
            "moving_mean_name": string(val_mean.layer_name),
            "moving_variance_name": string(val_var.layer_name),
C
channingss 已提交
1050
            "use_global_stats": spatial,
C
update  
channingss 已提交
1051 1052
            "name": string(node.layer_name)
        }
1053 1054
        node.fluid_code.add_layer(
            "batch_norm", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1055

1056
    @print_mapping_info
C
update  
channingss 已提交
1057
    def Transpose(self, node):
C
channingss 已提交
1058
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1059 1060
        perm = node.get_attr('perm')
        attr = {'perm': perm, "name": string(node.layer_name)}
1061 1062
        node.fluid_code.add_layer(
            "transpose", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1063

1064
    @print_mapping_info
C
update  
channingss 已提交
1065
    def Relu(self, node):
C
channingss 已提交
1066
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1067
        attr = {"name": string(node.layer_name)}
1068 1069
        node.fluid_code.add_layer(
            "relu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1070

1071
    @print_mapping_info
C
update  
channingss 已提交
1072
    def PRelu(self, node):
C
channingss 已提交
1073 1074
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_slope = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1075

C
channingss 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
        mode = 'channel'
        shape_slope = val_slope.out_shapes[0]
        if len(shape_slope) == 1:
            mode = 'all'
        elif len(shape_slope) > 2:
            mode = 'element'
        attr = {
            "param_attr": string(val_slope.layer_name),
            'mode': string(mode)
        }
1086 1087
        node.fluid_code.add_layer(
            "prelu", inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1088

1089
    @print_mapping_info
C
update  
channingss 已提交
1090
    def Squeeze(self, node):
C
channingss 已提交
1091 1092 1093
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        axes = node.get_attr('axes')
        attr = {'axes': axes, "name": string(node.layer_name)}
1094 1095 1096 1097 1098 1099 1100 1101 1102
        if len(val_x.out_shapes[0]) == 1:
            node.fluid_code.add_layer(
                "cast",
                inputs=val_x,
                output=node,
                param_attr={'dtype': string(val_x.dtype)})
        else:
            node.fluid_code.add_layer(
                "squeeze", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1103

1104
    @print_mapping_info
C
channings 已提交
1105 1106 1107
    def Equal(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
1108 1109 1110 1111 1112 1113 1114
        node.fluid_code.add_layer(
            "equal",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

C
Channingss 已提交
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    @print_mapping_info
    def Greater(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_y = self.graph.get_input_node(node, idx=1, copy=True)
        node.fluid_code.add_layer(
            "greater_than",
            inputs={'x': val_x,
                    'y': val_y},
            output=node,
            param_attr=None)

1126
    @print_mapping_info
C
channings 已提交
1127 1128 1129 1130
    def Where(self, node):
        condition = self.graph.get_input_node(node, idx=0, copy=True)
        val_x = self.graph.get_input_node(node, idx=1, copy=True)
        val_y = self.graph.get_input_node(node, idx=2, copy=True)
R
root 已提交
1131

C
channings 已提交
1132
        not_condition = condition.layer_name + '_not'
1133 1134 1135 1136 1137
        node.fluid_code.add_layer(
            "logical_not",
            inputs=condition,
            output=not_condition,
            param_attr=None)
R
root 已提交
1138
        cast_not_condition = not_condition + '_cast'
1139 1140 1141 1142 1143
        node.fluid_code.add_layer(
            "cast",
            inputs=not_condition,
            output=cast_not_condition,
            param_attr={'dtype': string(val_x.dtype)})
C
channings 已提交
1144
        cast_condition = condition.layer_name + '_cast'
1145 1146 1147 1148 1149
        node.fluid_code.add_layer(
            "cast",
            inputs=condition,
            output=cast_condition,
            param_attr={'dtype': string(val_x.dtype)})
R
root 已提交
1150
        mul_val_x = val_x.layer_name + '_mul'
1151 1152 1153 1154 1155 1156
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_x,
                    'y': cast_condition},
            output=mul_val_x,
            param_attr=None)
R
root 已提交
1157

C
channings 已提交
1158
        mul_val_y = val_y.layer_name + '_mul'
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
        node.fluid_code.add_layer(
            "elementwise_mul",
            inputs={'x': val_y,
                    'y': cast_not_condition},
            output=mul_val_y,
            param_attr=None)

        node.fluid_code.add_layer(
            "elementwise_add",
            inputs={'x': mul_val_x,
                    'y': mul_val_y},
            output=node,
            param_attr=None)

    @print_mapping_info
R
root 已提交
1174 1175
    def NonZero(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
        val_x_dim = len(val_x.out_shapes[0])
        if val_x_dim == 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "transpose",
                inputs=val_x,
                output=node,
                param_attr={'perm': [1, 0]})
        if val_x_dim > 1:
            node.fluid_code.add_layer("nonzero", inputs=val_x, output=val_x)
            node.fluid_code.add_layer(
                "split",
                inputs=val_x,
                output=val_x,
                param_attr={'num_or_sections': 1,
                            'dim': val_x_dim})
            node.fluid_code.add_layer("concat", inputs=val_x, output=node)

    @print_mapping_info
C
update  
channingss 已提交
1195
    def Identity(self, node):
C
channingss 已提交
1196
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1197
        node.fluid_code.add_layer("assign", inputs=val_x, output=node)
R
root 已提交
1198

1199
    @print_mapping_info
C
channings 已提交
1200 1201 1202 1203
    def Tile(self, node):
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_repeats = self.graph.get_input_node(node, idx=1, copy=True)
        repeats = _const_weight_or_none(val_repeats)
R
root 已提交
1204

1205 1206 1207
        if repeats is None:
            repeats = val_repeats.layer_name
        elif isinstance(repeats, int):
C
channings 已提交
1208
            repeats = [repeats]
R
root 已提交
1209

C
channings 已提交
1210
        attr = {
R
root 已提交
1211
            'expand_times': repeats,
C
channings 已提交
1212 1213
            "name": string(node.layer_name),
        }
1214 1215
        node.fluid_code.add_layer(
            "expand", inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1216

1217
    @print_mapping_info
C
update  
channingss 已提交
1218
    def MaxPool(self, node):
C
channingss 已提交
1219
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
channingss 已提交
1220
        auto_pad = node.get_attr('auto_pad', 'NOTSET')
C
update  
channingss 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        assert node.get_attr(
            "dilations") is None, 'only dilations = 0 is supported'  # optional

        kernel_shape = node.get_attr("kernel_shape")
        poolnd = len(kernel_shape)
        strides = node.get_attr("strides")
        pad_mode = node.get_attr("pads")
        ceil_mode = bool(node.get_attr('ceil_mode', 0))  # optional
        pads = node.get_attr('pads', [0] * (poolnd * 2))  # optional
        fluid_op = 'pool{}d'.format(poolnd)
        assert 2 <= poolnd <= 3, 'only pool2d and pool3d is supported'
C
channingss 已提交
1232

C
channingss 已提交
1233 1234
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1235
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
channingss 已提交
1236
            input_shape = val_x.out_shapes[0]
C
Channingss 已提交
1237 1238 1239 1240 1241
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
channingss 已提交
1242

C
update  
channingss 已提交
1243 1244 1245 1246 1247 1248 1249 1250 1251
        attr = {
            "pool_size": kernel_shape,
            "pool_type": string("max"),
            "pool_stride": strides,
            "pool_padding": paddings,
            "ceil_mode": ceil_mode,
            "name": string(node.layer_name),
            "exclusive": False
        }
1252 1253
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
update  
channingss 已提交
1254

C
channings 已提交
1255
    def _global_pool(self, node):
C
channingss 已提交
1256
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
C
update  
channingss 已提交
1257
        val_y = self.graph.get_node(node.layer.output[0], copy=True)
1258
        fluid_op = 'pool2d'
C
channings 已提交
1259 1260 1261 1262 1263 1264
        pool_type = None
        if node.layer.op_type == 'GlobalMaxPool':
            pool_type = 'max'
        elif node.layer.op_type == 'GlobalAveragePool':
            pool_type = 'avg'

C
update  
channingss 已提交
1265
        attr = {
C
channings 已提交
1266
            "pool_type": string(pool_type),
C
update  
channingss 已提交
1267 1268 1269
            "global_pooling": True,
            "name": string(node.layer_name)
        }
1270 1271
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
R
root 已提交
1272

1273
    @print_mapping_info
C
channings 已提交
1274 1275
    def GlobalMaxPool(self, node):
        self._global_pool(node)
R
root 已提交
1276

1277
    @print_mapping_info
C
channings 已提交
1278 1279
    def GlobalAveragePool(self, node):
        self._global_pool(node)
R
root 已提交
1280

1281
    @print_mapping_info
C
update  
channingss 已提交
1282
    def Conv(self, node):
C
channingss 已提交
1283 1284
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
update  
channingss 已提交
1285 1286 1287 1288 1289 1290
        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        self.omit_nodes.append(val_w.layer_name)

        has_bias = len(node.layer.input) == 3
        if has_bias:
C
channingss 已提交
1291
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
C
update  
channingss 已提交
1292 1293 1294
            self.omit_nodes.append(val_b.layer_name)
        auto_pad = node.get_attr('auto_pad', 'NOTSET')

C
channingss 已提交
1295
        kernel_shape = node.get_attr('kernel_shape')
C
update  
channingss 已提交
1296 1297
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d and conv3d is supported'
C
Channingss 已提交
1298
        num_out_channels = val_w.out_shapes[0][0]
C
update  
channingss 已提交
1299 1300 1301
        fluid_op = 'conv{}d'.format(convnd)

        num_groups = node.get_attr('group', 1)
C
Channingss 已提交
1302 1303 1304
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
update  
channingss 已提交
1305

C
channingss 已提交
1306
        input_shape = val_x.out_shapes[0]
C
update  
channingss 已提交
1307 1308
        paddings, val_x = self._pad_if_asymmetric(node, pads, val_x)

C
channingss 已提交
1309
        if auto_pad == "SAME_UPPER" or auto_pad == "SAME_LOWER":
C
Channingss 已提交
1310 1311 1312 1313 1314
            pad_h = _get_same_padding(input_shape[2], kernel_shape[0],
                                      strides[0])
            pad_w = _get_same_padding(input_shape[3], kernel_shape[1],
                                      strides[1])
            paddings = pad_h + pad_w
C
update  
channingss 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

        attr = {
            "num_filters": num_out_channels,
            "filter_size": kernel_shape,
            "stride": strides,
            "padding": paddings,
            "dilation": dilations,
            "groups": num_groups,
            'param_attr': string(val_w.layer_name),
            "name": string(node.layer_name)
        }
        if has_bias:
            attr["bias_attr"] = string(val_b.layer_name)
        else:
            attr["bias_attr"] = False
1330 1331
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)
C
channingss 已提交
1332

1333
    @print_mapping_info
C
channingss 已提交
1334
    def ConvTranspose(self, node):
C
channingss 已提交
1335 1336
        val_x = self.graph.get_input_node(node, idx=0, copy=True)
        val_w = self.graph.get_input_node(node, idx=1, copy=True)
C
channingss 已提交
1337
        val_b = None
R
root 已提交
1338
        if len(node.layer.input) > 2:
C
channingss 已提交
1339 1340
            val_b = self.graph.get_input_node(node, idx=2, copy=True)
            self.omit_nodes.append(val_b.layer_name)
C
channingss 已提交
1341 1342 1343 1344 1345 1346
        self.omit_nodes.append(val_w.layer_name)

        val_y = self.graph.get_node(node.layer.output[0], copy=True)

        auto_pad = node.get_attr('auto_pad', 'NOTSET')
        out_padding = node.get_attr('output_padding', [0, 0])
C
channingss 已提交
1347
        kernel_shape = node.get_attr('kernel_shape')
C
channingss 已提交
1348 1349 1350
        assert kernel_shape, 'kernel_shape not inferred'
        convnd = len(kernel_shape)
        assert 2 <= convnd <= 3, 'only conv2d_transpose and conv3d_transpose supported'
C
channingss 已提交
1351
        num_out_channels = val_w.out_shapes[0][1]
C
channingss 已提交
1352 1353
        fluid_op = 'conv{}d_transpose'.format(convnd)

C
channingss 已提交
1354 1355 1356 1357 1358
        num_groups = node.get_attr('group', 1)
        strides = node.get_attr('strides', [1] * convnd)
        dilations = node.get_attr('dilations', [1] * convnd)
        output_size = node.get_attr('output_shape', [])
        pads = node.get_attr('pads', [0] * (convnd * 2))
C
channingss 已提交
1359 1360 1361 1362

        paddings, var_x = self._pad_if_asymmetric(node, pads, val_x)

        output_size = [0, 0]
C
channingss 已提交
1363

1364 1365
        output_size[0] = (val_x.out_shapes[0][2] - 1
                          ) * strides[0] - 2 * paddings[0] + dilations[0] * (
C
channingss 已提交
1366
                              kernel_shape[0] - 1) + 1 + out_padding[0]
1367 1368
        output_size[1] = (val_x.out_shapes[0][3] - 1
                          ) * strides[1] - 2 * paddings[1] + dilations[1] * (
C
channingss 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
                              kernel_shape[1] - 1) + 1 + out_padding[1]
        attr = {
            'num_filters': num_out_channels,
            'output_size': output_size or None,
            'filter_size': kernel_shape,
            'padding': paddings,
            'stride': strides,
            'dilation': dilations,
            'groups': num_groups,
            'param_attr': string(val_w.layer_name),
C
channingss 已提交
1379
            'bias_attr': None if val_b is None else string(val_b.layer_name),
C
channingss 已提交
1380 1381
            'name': string(node.layer_name),
        }
1382 1383
        node.fluid_code.add_layer(
            fluid_op, inputs=val_x, output=node, param_attr=attr)