tf_optimizer.py 48.5 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO useless node remove
J
jiangjiajun 已提交
16
from x2paddle.op_mapper.tf_op_mapper import TFOpMapper
J
jiangjiajun 已提交
17
from x2paddle.core.fluid_code import Layer
J
jiangjiajun 已提交
18
from x2paddle.core.util import *
J
jiangjiajun 已提交
19
import six
J
jiangjiajun 已提交
20
import numpy
J
jiangjiajun 已提交
21
import copy as cp
J
jiangjiajun 已提交
22 23


J
jiangjiajun 已提交
24 25 26 27 28 29 30 31 32
def exist_act(node):
    for layer in node.fluid_code.layers:
        if layer.param_attr is not None:
            act = layer.param_attr.get("act", None)
            if act is not None:
                return True
    return False


J
jiangjiajun 已提交
33 34 35 36 37 38 39 40 41
class TFOptimizer(object):
    activation_ops = {
        'Relu': 'relu',
        'Sigmoid': 'sigmoid',
        'Relu6': 'relu6',
        'swish_f32': 'swish'
    }
    layers_with_act = [
        'Conv2D', 'BiasAdd', 'DepthwiseConv2dNative', 'Conv2DBackpropInput',
42 43
        'FusedBatchNorm', 'conv2d', 'elementwise_add', 'conv2d_transpose',
        'batch_norm'
J
jiangjiajun 已提交
44 45
    ]
    layers_with_bias = [
46 47
        'Conv2D', 'DepthwiseConv2dNative', 'Conv2DBackpropInput', 'conv2d',
        'conv2d_transpose'
J
jiangjiajun 已提交
48
    ]
49

J
jiangjiajun 已提交
50 51 52 53 54 55 56 57
    def __init__(self, op_mapper):
        self.op_mapper = op_mapper
        self.graph = op_mapper.graph

    def delete_redundance_code(self):
        for node_name in self.graph.topo_sort:
            if node_name in self.op_mapper.omit_nodes:
                node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
58 59
                if node is None:
                    continue
J
jiangjiajun 已提交
60 61 62 63
                omit_freq = self.op_mapper.omit_nodes.count(node_name)
                if len(node.outputs) <= omit_freq:
                    node.fluid_code.clear()

J
jiangjiajun 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
                    # remove node from graph
                    input_names = node.inputs
                    output_names = node.outputs
                    for in_name in input_names:
                        in_node = self.graph.get_node(in_name)
                        index = in_node.outputs.index(node_name)
                        del in_node.outputs[index]
                    for out_name in output_names:
                        out_node = self.graph.get_node(out_name)
                        index = out_node.inputs.index(node_name)
                        del out_node.inputs[index]
                    del self.graph.node_map[node_name]

    def strip_graph(self):
        visited_nodes = set()

        def visit(node_name):
            if node_name in visited_nodes:
                return
            visited_nodes.add(node_name)
            input_names = self.graph.get_node(node_name).inputs
            for in_name in input_names:
                visit(in_name)

        for node_name in self.graph.output_nodes:
            visit(node_name)

        for i, node_name in enumerate(self.graph.topo_sort):
            if node_name not in visited_nodes:
                node = self.graph.get_node(node_name)
                if node is None:
                    continue
                input_names = node.inputs
                output_names = node.outputs
                for in_name in input_names:
                    in_node = self.graph.get_node(in_name)
                    index = in_node.outputs.index(node_name)
                    del in_node.outputs[index]
                for out_name in output_names:
                    out_node = self.graph.get_node(out_name)
                    index = out_node.inputs.index(node_name)
                    del out_node.inputs[index]
                del self.graph.node_map[node_name]

J
jiangjiajun 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    def optimize_elementwise_op(self):
        elementwise_ops = [
            'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv',
            'GreaterEqual'
        ]
        revertable_ops = ['Add', 'Mul']
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
            if node is None:
                continue
            if node.layer_type in elementwise_ops:
                if len(node.fluid_code.layers) != 2:
                    continue
                if node.fluid_code.layers[0].op != "expand":
                    continue
                expand_out = node.fluid_code.layers[0].output
                expand_in = node.fluid_code.layers[0].inputs
                expand_times = node.fluid_code.layers[0].param_attr[
                    "expand_times"]

                x = node.fluid_code.layers[1].inputs["x"]
                y = node.fluid_code.layers[1].inputs["y"]
                if isinstance(
                        x,
                        six.string_types) and node.layer_type in revertable_ops:
                    node.fluid_code.layers[1].inputs["y"] = x
                    node.fluid_code.layers[1].inputs["x"] = y
                    x = node.fluid_code.layers[1].inputs["x"]
                    y = expand_in
                elif isinstance(y, six.string_types):
                    y = expand_in
                else:
                    continue

                x_shape = x.out_shapes[0]
                y_shape = y.out_shapes[0]
                if len(x_shape) != len(y_shape):
                    continue
                if len(x_shape) == 4:
                    x_shape = [x_shape[i] for i in [0, 3, 1, 2]]
                    y_shape = [y_shape[i] for i in [0, 3, 1, 2]]

                continue_flag = True
                for i in range(len(x_shape)):
                    if y_shape[-1 * (i + 1)] == 1 and continue_flag:
                        expand_times[-1 * (i + 1)] = 1
                    else:
                        continue_flag = False

                if expand_times.count(1) == len(expand_times):
                    node.fluid_code.layers[1].inputs["y"] = expand_in
                    del node.fluid_code.layers[0]

J
jiangjiajun 已提交
161 162 163 164
    def merge_activation(self):
        act_nodes = list()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
165 166
            if node is None:
                continue
J
jiangjiajun 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
            if node.layer_type in self.activation_ops:
                act_nodes.append(node_name)

        for act_node_name in act_nodes:
            node = self.graph.get_node(act_node_name)
            input = self.graph.get_node(node.inputs[0])
            if input.layer_type not in self.layers_with_act:
                continue
            if len(input.fluid_code.layers) == 0:
                continue
            if 'act' in input.fluid_code.layers[
                    -1].param_attr and input.fluid_code.layers[-1].param_attr[
                        'act'] is not None:
                continue
            if len(input.outputs) != 1:
                continue
183 184 185 186 187 188
            index = -1
            for i in range(len(input.fluid_code.layers)):
                if input.fluid_code.layers[i].op in self.layers_with_act:
                    index = i
                    break
            input.fluid_code.layers[index].param_attr['act'] = string(
J
jiangjiajun 已提交
189 190 191 192 193 194 195 196
                self.activation_ops[node.layer_type])
            input.fluid_code.layers[-1].output = node.fluid_code.layers[
                0].output
            self.graph.remove_node(act_node_name)

    def merge_bias(self):
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
197 198
            if node is None:
                continue
J
jiangjiajun 已提交
199 200 201 202 203 204 205 206 207 208 209 210
            if node.layer_type == "BiasAdd":
                input = self.graph.get_node(node.inputs[0])
                if input.layer_type not in self.layers_with_bias:
                    continue
                if len(input.outputs) != 1:
                    continue
                if len(input.fluid_code.layers) == 0:
                    continue
                bias_with_act = False
                if 'act' in node.fluid_code.layers[-1].param_attr:
                    bias_with_act = True
                layer_with_act = False
211 212 213 214 215
                index = -1
                for i in range(len(input.fluid_code.layers)):
                    if input.fluid_code.layers[i].op in self.layers_with_bias:
                        index = i
                        break
J
jiangjiajun 已提交
216
                if 'act' in input.fluid_code.layers[
217 218
                        index].param_attr and input.fluid_code.layers[
                            index].param_attr['act'] is not None:
J
jiangjiajun 已提交
219 220 221 222
                    layer_with_act = True

                if bias_with_act and layer_with_act:
                    continue
223
                if not input.fluid_code.layers[index].param_attr['bias_attr']:
J
jiangjiajun 已提交
224
                    bias_name = node.inputs[1]
225
                    input.fluid_code.layers[index].param_attr[
J
jiangjiajun 已提交
226 227 228 229
                        'bias_attr'] = string(bias_name)
                    input.fluid_code.layers[-1].output = node.fluid_code.layers[
                        0].output
                    if bias_with_act:
230
                        input.fluid_code.layers[index].param_attr[
J
jiangjiajun 已提交
231 232 233
                            'act'] = node.fluid_code.layers[-1].param_attr[
                                'act']
                    node.fluid_code.clear()
234
                    self.graph.remove_node(node.layer_name)
M
modify  
mamingjie-China 已提交
235
                    self.graph.identity_map[node.layer_name] = input.layer_name
236 237

    def remove_transpose(self):
J
jiangjiajun 已提交
238 239 240
        graph_copy = cp.deepcopy(self.graph)
        nhwc_insensitive_ops = [
            'Relu', 'Relu6', 'Abs', 'Sigmoid', 'Exp', 'Rsqrt', 'swish_f32',
M
modify  
mamingjie-China 已提交
241
            'LeakyRelu', 'Cast', 'Tanh'
J
jiangjiajun 已提交
242 243 244 245 246
        ]
        elementwise_ops = [
            'Sub', 'Add', 'RealDiv', 'Maximum', 'Mul', 'FloorDiv',
            'GreaterEqual'
        ]
247 248 249
        optimize_ops = [
            'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative',
            'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor',
J
jiangjiajun 已提交
250
            'ResizeBilinear', "Placeholder"
251
        ]
M
modify  
mamingjie-China 已提交
252 253 254 255 256 257
        can_be_optimized_ops = [
            'Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative',
            'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor',
            'ResizeBilinear', "Placeholder", 'Relu', 'Relu6', 'Abs', 'Sigmoid',
            'Exp', 'Rsqrt', 'swish_f32', 'LeakyRelu', 'Cast', 'Tanh'
        ]
J
jiangjiajun 已提交
258

259
        for node_name in self.graph.topo_sort:
J
jiangjiajun 已提交
260
            node = graph_copy.get_node(node_name)
261 262
            if node is None:
                continue
M
modify  
mamingjie-China 已提交
263
            if node.layer_type in can_be_optimized_ops:
J
jiangjiajun 已提交
264 265 266 267 268 269
                if node.fluid_code.layers[
                        -1].op != "transpose" or node.fluid_code.layers[
                            -1].param_attr["perm"] != [0, 2, 3, 1]:
                    continue
                can_be_removed = True
                output_names = node.outputs
270
                for out_name in output_names:
J
jiangjiajun 已提交
271 272 273 274 275 276 277 278 279 280
                    out_node = graph_copy.get_node(out_name)
                    if hasattr(out_node, "can_be_removed"):
                        if not out_node.can_be_removed:
                            can_be_removed = False
                            break
                    elif out_node.fluid_code.layers[
                            0].op != "transpose" or out_node.fluid_code.layers[
                                0].param_attr["perm"] != [0, 3, 1, 2]:
                        can_be_removed = False
                        break
M
modify  
mamingjie-China 已提交
281 282 283
                    elif out_node.layer_type in elementwise_ops:
                        can_be_removed = False
                        break
J
jiangjiajun 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
                if can_be_removed and len(node.fluid_code.layers) > 1:
                    true_node = self.graph.get_node(node_name)
                    if true_node.layer_type == "Placeholder":
                        index = self.graph.input_nodes.index(
                            true_node.fluid_code.layers[-2].output)
                        if isinstance(true_node.fluid_code.layers[-1].output,
                                      str):
                            self.graph.input_nodes[
                                index] = true_node.fluid_code.layers[-1].output
                        else:
                            self.graph.input_nodes[
                                index] = true_node.fluid_code.layers[
                                    -1].output.layer_name
                    true_node.fluid_code.layers[
                        -2].output = true_node.fluid_code.layers[-1].output
                    node.removed = True
                    del true_node.fluid_code.layers[-1]
                    for out_name in output_names:
                        out_node = self.graph.get_node(out_name)
                        out_node.fluid_code.layers[
                            1].inputs = out_node.fluid_code.layers[0].inputs
305
                        del out_node.fluid_code.layers[0]
J
jiangjiajun 已提交
306 307 308 309 310 311

        for node_name in self.graph.topo_sort:
            node = graph_copy.get_node(node_name)
            if node is None:
                continue
            if node.layer_type in elementwise_ops:
M
modify  
mamingjie-China 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
                can_be_removed = True
                if node.fluid_code.layers[
                        -1].op != "transpose" or node.fluid_code.layers[
                            -1].param_attr["perm"] != [0, 2, 3, 1]:
                    continue
                can_be_removed = True

                output_names = node.outputs
                for out_name in output_names:
                    out_node = graph_copy.get_node(out_name)
                    if len(out_node.fluid_code.layers) < 3:
                        can_be_removed = False
                        break
                    if hasattr(out_node, "can_be_removed"):
                        if not out_node.can_be_removed:
                            can_be_removed = False
                            break
                    if out_node.layer_type in can_be_optimized_ops:
                        if out_node.fluid_code.layers[
                                0].op != "transpose" or out_node.fluid_code.layers[
                                    0].param_attr["perm"] != [0, 3, 1, 2]:
                            can_be_removed = False
                            break
                    elif out_node.layer_type in elementwise_ops:
                        if out_node.fluid_code.layers[
                                0].op != "transpose" and out_node.fluid_code.layers[
                                    1].op != "transpose":
                            can_be_removed = False
                            break
                        if out_node.fluid_code.layers[0].op == "transpose":
                            if out_node.fluid_code.layers[0].param_attr[
                                    "perm"] != [0, 3, 1, 2]:
                                can_be_removed = False
                                break
                        if out_node.fluid_code.layers[1].op == "transpose":
                            if out_node.fluid_code.layers[1].param_attr[
                                    "perm"] != [0, 3, 1, 2]:
                                can_be_removed = False
                                break

                if can_be_removed and len(node.fluid_code.layers) > 1:
J
jiangjiajun 已提交
353
                    true_node = self.graph.get_node(node_name)
M
modify  
mamingjie-China 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
                    true_node.fluid_code.layers[
                        -2].output = true_node.fluid_code.layers[-1].output
                    del true_node.fluid_code.layers[-1]
                    for out_name in output_names:
                        out_node = self.graph.get_node(out_name)
                        if out_node.layer_type in can_be_optimized_ops:
                            out_node.fluid_code.layers[
                                1].inputs = out_node.fluid_code.layers[0].inputs
                            del out_node.fluid_code.layers[0]
                        elif out_node.layer_type in elementwise_ops:
                            if out_node.inputs[0] in node.layer_name:
                                if out_node.fluid_code.layers[
                                        1].op == 'transpose':
                                    out_node.fluid_code.layers[2].inputs[
                                        'x'] = out_node.fluid_code.layers[
                                            0].inputs
                                    del out_node.fluid_code.layers[0]
                                else:
                                    out_node.fluid_code.layers[1].inputs[
                                        'x'] = out_node.fluid_code.layers[
                                            0].inputs
                                    del out_node.fluid_code.layers[0]
                            elif out_node.inputs[1] in node.layer_name:
                                if out_node.fluid_code.layers[
                                        1].op == 'transpose':
                                    out_node.fluid_code.layers[2].inputs[
                                        'y'] = out_node.fluid_code.layers[
                                            1].inputs
                                    del out_node.fluid_code.layers[1]
                                else:
                                    out_node.fluid_code.layers[1].inputs[
                                        'y'] = out_node.fluid_code.layers[
                                            0].inputs
                                    del out_node.fluid_code.layers[0]
        graph_copy = cp.deepcopy(self.graph)
        for node_name in self.graph.topo_sort:
            node = graph_copy.get_node(node_name)
            if node is None or len(node.fluid_code.layers) < 2:
                continue
            if node.layer_type in can_be_optimized_ops and node.layer_type != "Placeholder":
                if node.fluid_code.layers[
                        -1].op != "transpose" or node.fluid_code.layers[
                            -1].param_attr["perm"] != [0, 2, 3, 1]:
J
jiangjiajun 已提交
397
                    continue
M
modify  
mamingjie-China 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
                can_be_removed = True
                output_names = node.outputs
                for out_name in output_names:
                    out_node = graph_copy.get_node(out_name)
                    if hasattr(out_node, "can_be_removed"):
                        if not out_node.can_be_removed:
                            can_be_removed = False
                            break
                    if len(out_node.fluid_code.layers) < 2:
                        can_be_removed = False
                        break
                    if out_node.layer_type in can_be_optimized_ops:
                        if out_node.fluid_code.layers[
                                0].op != "transpose" or out_node.fluid_code.layers[
                                    0].param_attr["perm"] != [0, 3, 1, 2]:
                            can_be_removed = False
                            break
                    elif out_node.layer_type in elementwise_ops:
                        if out_node.fluid_code.layers[
                                0].op != "transpose" and out_node.fluid_code.layers[
                                    1].op != "transpose":
                            can_be_removed = False
                            break
                        if out_node.fluid_code.layers[
                                0].op == "expand" or out_node.fluid_code.layers[
                                    1].op == "expand":
                            can_be_removed = False
                            break
                        if out_node.fluid_code.layers[0].op == "transpose":
                            if out_node.fluid_code.layers[0].param_attr[
                                    "perm"] != [0, 3, 1, 2]:
                                can_be_removed = False
                                break
                        if out_node.fluid_code.layers[1].op == "transpose":
                            if out_node.fluid_code.layers[1].param_attr[
                                    "perm"] != [0, 3, 1, 2]:
                                can_be_removed = False
                                break
                    elif out_node.layer_type not in elementwise_ops and out_node.layer_type not in can_be_optimized_ops:
                        can_be_removed = False
                        break

                if can_be_removed:
                    true_node = self.graph.get_node(node_name)
                    if len(true_node.fluid_code.layers) < 2:
                        continue
                    true_node.fluid_code.layers[
                        -2].output = true_node.fluid_code.layers[-1].output
                    del true_node.fluid_code.layers[-1]
                    for out_name in output_names:
J
jiangjiajun 已提交
448
                        out_node = self.graph.get_node(out_name)
M
modify  
mamingjie-China 已提交
449
                        if out_node.layer_type in can_be_optimized_ops:
J
jiangjiajun 已提交
450 451 452
                            out_node.fluid_code.layers[
                                1].inputs = out_node.fluid_code.layers[0].inputs
                            del out_node.fluid_code.layers[0]
M
modify  
mamingjie-China 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
                        elif out_node.layer_type in elementwise_ops:
                            if out_node.inputs[0] in node.layer_name:
                                if out_node.fluid_code.layers[
                                        1].op == 'transpose':
                                    if out_node.fluid_code.layers[
                                            2].op == 'transpose':
                                        out_node.fluid_code.layers[3].inputs[
                                            'x'] = out_node.fluid_code.layers[
                                                0].inputs
                                    else:
                                        out_node.fluid_code.layers[2].inputs[
                                            'x'] = out_node.fluid_code.layers[
                                                0].inputs
                                    del out_node.fluid_code.layers[0]
                                else:
                                    out_node.fluid_code.layers[1].inputs[
                                        'x'] = out_node.fluid_code.layers[
                                            0].inputs
                                    del out_node.fluid_code.layers[0]
                            elif out_node.inputs[1] in node.layer_name:
                                if out_node.fluid_code.layers[
                                        1].op == 'transpose':
                                    out_node.fluid_code.layers[2].inputs[
                                        'y'] = out_node.fluid_code.layers[
                                            1].inputs
                                    del out_node.fluid_code.layers[1]
                                else:
                                    out_node.fluid_code.layers[1].inputs[
                                        'y'] = out_node.fluid_code.layers[
                                            0].inputs
                                    del out_node.fluid_code.layers[0]
J
jiangjiajun 已提交
484

M
modify  
mamingjie-China 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        graph_copy = cp.deepcopy(self.graph)
        for node_name in self.graph.topo_sort:
            node = graph_copy.get_node(node_name)
            if node is None:
                continue
            if node.layer_type in elementwise_ops:
                can_be_removed = True
                if len(node.fluid_code.layers) < 3:
                    continue

                numTranspose = 0
                numNotTranspose = 0

                for i in range(len(node.fluid_code.layers)):
                    if node.fluid_code.layers[i].op == 'transpose':
                        numTranspose += 1
                    elif node.fluid_code.layers[i].op != 'expand':
                        numNotTranspose += 1
                if numTranspose > numNotTranspose:
                    if node.fluid_code.layers[0].op == 'expand':
                        if node.fluid_code.layers[
                                1].op != 'transpose' or node.fluid_code.layers[
                                    2].op != 'transpose':
                            continue
                        else:
                            true_node = self.graph.get_node(node_name)
                            true_node.fluid_code.layers[3].inputs[
                                'x'] = true_node.fluid_code.layers[1].inputs
                            true_node.fluid_code.layers[3].inputs[
                                'y'] = true_node.fluid_code.layers[2].inputs

                            l = Layer()
                            l.op = 'transpose'
                            l.inputs = true_node.fluid_code.layers[3].output
                            l.param_attr = {'perm': [0, 3, 1, 2]}
M
mamingjie-China 已提交
520
                            if isinstance(l.inputs, six.string_types):
M
modify  
mamingjie-China 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
                                l.output = l.inputs
                            else:
                                l.output = l.inputs.layer_name
                            true_node.fluid_code.layers.append(l)
                            del true_node.fluid_code.layers[1]
                            del true_node.fluid_code.layers[1]
                    else:
                        if node.fluid_code.layers[
                                0].op != 'transpose' or node.fluid_code.layers[
                                    1].op != 'transpose':
                            continue
                        else:
                            true_node = self.graph.get_node(node_name)
                            true_node.fluid_code.layers[2].inputs[
                                'x'] = true_node.fluid_code.layers[0].inputs
                            true_node.fluid_code.layers[2].inputs[
                                'y'] = true_node.fluid_code.layers[1].inputs

                            l = Layer()
                            l.op = 'transpose'
                            l.inputs = true_node.fluid_code.layers[2].output
                            l.param_attr = {'perm': [0, 3, 1, 2]}
                            l.output = l.inputs.layer_name
                            true_node.fluid_code.layers.append(l)
                            del true_node.fluid_code.layers[0]
                            del true_node.fluid_code.layers[0]

J
jiangjiajun 已提交
548 549 550 551 552
    def make_nchw_input_output(self):
        for i, name in enumerate(self.graph.input_nodes):
            node = self.graph.get_node(name)
            if len(node.out_shapes[0]) == 4 and node.tf_data_format == "NHWC":
                shape = node.fluid_code.layers[0].param_attr["shape"]
M
mamingjie-China 已提交
553
                shape = [shape[j] for j in [0, 3, 1, 2]]
J
jiangjiajun 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567
                node.fluid_code.layers[0].param_attr["shape"] = shape
                node.fluid_code.layers[0].output = "nhwc_" + name
                attr = {"perm": [0, 2, 3, 1]}
                node.fluid_code.add_layer("transpose",
                                          inputs="nhwc_" + name,
                                          output=node,
                                          param_attr=attr)
                self.graph.input_nodes[i] = "nhwc_" + name
        for i, name in enumerate(self.graph.output_nodes):
            node = self.graph.get_node(name)
            if node.layer_type != "transpose":
                if node.fluid_code.layers[-1].op == "transpose":
                    node.fluid_code.layers[-2].output = name
                    del node.fluid_code.layers[-1]
J
jiangjiajun 已提交
568

J
jiangjiajun 已提交
569 570 571
    def optimize_sub_graph(self):
        self.merge_batch_norm()
        self.merge_prelu()
J
jiangjiajun 已提交
572 573
        self.merge_scale()
        self.merge_affine_channel()
J
jiangjiajun 已提交
574

J
jiangjiajun 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    def merge_batch_norm(self):
        for i, name in enumerate(self.graph.topo_sort):
            node = self.graph.get_node(name)
            if node is None:
                continue
            is_batch_norm = True
            if node.layer_type == "Add":
                in_nodes0 = [
                    self.graph.get_node(in_name) for in_name in node.inputs
                ]
                if in_nodes0[0].layer_type != "Mul" or in_nodes0[
                        1].layer_type != "Sub":
                    is_batch_norm = False
                    continue

J
jiangjiajun 已提交
590 591 592 593
                if exist_act(in_nodes0[0]) or exist_act(in_nodes0[1]):
                    is_batch_norm = False
                    continue

J
jiangjiajun 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607
                in_nodes1 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[0].inputs
                ]
                in_nodes2 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[1].inputs
                ]
                if len(in_nodes1[0].out_shapes[0]) != 4:
                    is_batch_norm = False
                    continue
                if in_nodes1[1].layer_type != "Mul":
                    is_batch_norm = False
                    continue
J
jiangjiajun 已提交
608 609 610
                if exist_act(in_nodes1[1]):
                    is_batch_norm = False
                    continue
J
jiangjiajun 已提交
611 612 613 614 615

                if in_nodes2[0].layer_type != "Const" or in_nodes2[
                        1].layer_type != "Mul":
                    is_batch_norm = False
                    continue
J
jiangjiajun 已提交
616 617 618
                if exist_act(in_nodes2[1]):
                    is_batch_norm = False
                    continue
J
jiangjiajun 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

                in_nodes3 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes1[1].inputs
                ]
                if in_nodes3[0].layer_type != "Rsqrt" or in_nodes3[
                        1].layer_type != "Const":
                    is_batch_norm = False
                    continue

                in_nodes4 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes2[1].inputs
                ]
                if in_nodes4[0].layer_type != "Const" or in_nodes4[
                        1].layer_name != in_nodes1[1].layer_name:
                    is_batch_norm = False
                    continue

                in_nodes5 = self.graph.get_node(in_nodes3[0].inputs[0])
                if in_nodes5.layer_type != "Add":
                    is_batch_norm = False
                    continue
J
jiangjiajun 已提交
642 643 644
                if exist_act(in_nodes5):
                    is_batch_norm = False
                    continue
J
jiangjiajun 已提交
645 646 647 648 649 650 651 652 653

                in_nodes6 = [
                    self.graph.get_node(in_name) for in_name in in_nodes5.inputs
                ]
                if in_nodes6[0].layer_type != "Const" or in_nodes6[
                        1].layer_type != "Const":
                    is_batch_norm = False
                    continue

J
jiangjiajun 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
                if len(in_nodes0[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes0[1].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes1[1].outputs) != 2:
                    is_batch_norm = False
                    continue
                if len(in_nodes2[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes2[1].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes3[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes3[1].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes4[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes5.outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes6[0].outputs) != 1:
                    is_batch_norm = False
                    continue
                if len(in_nodes6[1].outputs) != 1:
                    is_batch_norm = False
                    continue

J
jiangjiajun 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
                conv_shape = in_nodes1[0].out_shapes[0]
                if conv_shape[3] < 0:
                    is_batch_norm = False
                    continue

                # moving_variance
                if in_nodes6[0].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                # epsilon
                if in_nodes6[1].value.size != 1:
                    is_batch_norm = False
                    continue

                # gamma
                if in_nodes3[1].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                # moving_mean
                if in_nodes4[0].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                # beta
                if in_nodes2[0].value.size != conv_shape[3]:
                    is_batch_norm = False
                    continue

                if is_batch_norm:
                    index = in_nodes1[0].outputs.index(in_nodes0[0].layer_name)
J
jiangjiajun 已提交
720
                    in_nodes1[0].outputs[index] = node.layer_name
J
jiangjiajun 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734
                    node.layer_type = "FusedBatchNorm"
                    node.inputs = [in_nodes1[0].layer_name]
                    act = node.fluid_code.layers[-1].param_attr.get("act", None)
                    node.fluid_code.clear()
                    attr = {
                        "epsilon": in_nodes6[1].value,
                        "param_attr": string(in_nodes3[1].layer_name),
                        "bias_attr": string(in_nodes2[0].layer_name),
                        "moving_mean_name": string(in_nodes4[0].layer_name),
                        "moving_variance_name": string(in_nodes6[0].layer_name),
                        "is_test": True,
                        "act": act
                    }

J
jiangjiajun 已提交
735 736 737 738 739
                    node.fluid_code.add_layer(
                        "batch_norm",
                        inputs=in_nodes1[0].fluid_code.layers[-1].output,
                        output=node,
                        param_attr=attr)
J
jiangjiajun 已提交
740 741 742 743 744 745 746 747

                del self.graph.node_map[in_nodes0[0].layer_name]
                del self.graph.node_map[in_nodes0[1].layer_name]
                del self.graph.node_map[in_nodes1[1].layer_name]
                del self.graph.node_map[in_nodes2[1].layer_name]
                del self.graph.node_map[in_nodes3[0].layer_name]
                del self.graph.node_map[in_nodes4[0].layer_name]
                del self.graph.node_map[in_nodes5.layer_name]
J
jiangjiajun 已提交
748 749 750 751 752 753 754 755

    def merge_prelu(self):
        for i, name in enumerate(self.graph.topo_sort):
            node = self.graph.get_node(name)
            if node is None:
                continue
            is_prelu = True
            if node.layer_type == "Add":
J
jiangjiajun 已提交
756 757 758
                if exist_act(node):
                    is_prelu = False
                    continue
J
jiangjiajun 已提交
759 760 761 762 763 764 765
                in_nodes0 = [
                    self.graph.get_node(in_name) for in_name in node.inputs
                ]
                if in_nodes0[0].layer_type != "Relu" or in_nodes0[
                        1].layer_type != "Mul":
                    is_prelu = False
                    continue
J
jiangjiajun 已提交
766 767 768 769
                if exist_act(in_nodes0[1]):
                    is_prelu = False
                    continue

J
jiangjiajun 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
                if len(in_nodes0[0].outputs) != 1 or len(
                        in_nodes0[1].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes1 = self.graph.get_node(in_nodes0[0].inputs[0])
                in_nodes2 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[1].inputs
                ]
                if in_nodes2[1].layer_type != "Const" or numpy.fabs(
                        in_nodes2[1].value - 0.5) > 1e-06:
                    is_prelu = False
                    continue
                if in_nodes2[0].layer_type != "Mul":
                    is_prelu = False
                    continue
J
jiangjiajun 已提交
787 788 789
                if exist_act(in_nodes2[0]):
                    is_prelu = False
                    continue
J
jiangjiajun 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802
                if len(in_nodes2[1].outputs) != 1 or len(
                        in_nodes2[0].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes3 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes2[0].inputs
                ]
                if in_nodes3[0].layer_type != "Const" or in_nodes3[
                        1].layer_type != "Sub":
                    is_prelu = False
                    continue
J
jiangjiajun 已提交
803 804 805
                if exist_act(in_nodes3[1]):
                    is_prelu = False
                    continue
J
jiangjiajun 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
                if len(in_nodes3[0].outputs) != 1 or len(
                        in_nodes3[1].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes4 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes3[1].inputs
                ]
                if in_nodes4[0].layer_name != in_nodes1.layer_name or in_nodes4[
                        1].layer_type != "Abs":
                    is_prelu = False
                    continue
                if len(in_nodes4[1].outputs) != 1:
                    is_prelu = False
                    continue

                in_nodes5 = self.graph.get_node(in_nodes4[1].inputs[0])
                if in_nodes5.layer_name != in_nodes1.layer_name:
                    is_prelu = False
                    continue

                if len(in_nodes0[0].outputs) != 1:
                    is_prelu = false
                    continue
                if len(in_nodes0[1].outputs) != 1:
                    is_prelu = False
                    continue
                if len(in_nodes1.outputs) < 3:
                    is_prelu = False
                    continue
                if len(in_nodes2[0].outputs) != 1:
                    is_prelu = false
                    continue
                if len(in_nodes2[1].outputs) != 1:
                    is_prelu = False
                    continue
                if len(in_nodes3[0].outputs) != 1:
                    is_prelu = False
                    continue
                if len(in_nodes3[1].outputs) != 1:
                    is_prelu = false
                    continue
                if len(in_nodes4[1].outputs) != 1:
                    is_prelu = False
                    continue

                mode = None
                in_shape = in_nodes1.out_shapes[0]
                if in_shape == list(in_nodes3[0].value.shape):
                    mode = "element"
                elif len(in_nodes3[0].value.shape) == 0:
                    mode = "all"
                elif len(in_nodes3[0].value.shape
                         ) == 1 and in_nodes3[0].value.shape[0] == 1:
                    mode = "all"
                elif len(in_shape) == 4 and len(
                        in_nodes3[0].value.shape
                ) == 1 and in_nodes3[0].value.shape[0] == in_shape[-1]:
                    mode = "channel"
                    weight = self.op_mapper.weights[in_nodes3[0].layer_name]
                    weight = numpy.expand_dims(weight, 0)
                    weight = numpy.expand_dims(weight, 2)
                    weight = numpy.expand_dims(weight, 3)
                    self.op_mapper.weights[in_nodes3[0].layer_name] = weight
                    in_nodes3[0].fluid_code.layers[0].param_attr["shape"] = [
                        1, in_shape[-1], 1, 1
                    ]
                else:
                    is_prelu = False
                    continue

                if is_prelu:
                    index = in_nodes1.outputs.index(in_nodes0[0].layer_name)
                    del in_nodes1.outputs[index]
                    index = in_nodes1.outputs.index(in_nodes3[1].layer_name)
                    del in_nodes1.outputs[index]
                    index = in_nodes1.outputs.index(in_nodes4[1].layer_name)
                    del in_nodes1.outputs[index]
J
jiangjiajun 已提交
885
                    in_nodes1.outputs.append(node.layer_name)
J
jiangjiajun 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

                    node.layer_type = "Prelu"
                    node.inputs = [in_nodes1.layer_name]
                    act = node.fluid_code.layers[-1].param_attr.get("act", None)
                    node.fluid_code.clear()
                    attr = {
                        "mode": string(mode),
                        "param_attr": string(in_nodes3[0].layer_name)
                    }

                    node.fluid_code.add_layer(
                        "prelu",
                        inputs=in_nodes1.fluid_code.layers[-1].output,
                        output=node,
                        param_attr=attr)
                del self.graph.node_map[in_nodes0[0].layer_name]
                del self.graph.node_map[in_nodes0[1].layer_name]
                del self.graph.node_map[in_nodes2[0].layer_name]
                del self.graph.node_map[in_nodes2[1].layer_name]
                del self.graph.node_map[in_nodes3[1].layer_name]
                del self.graph.node_map[in_nodes4[1].layer_name]
J
jiangjiajun 已提交
907

J
jiangjiajun 已提交
908
    def merge_scale(self):
J
jiangjiajun 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
        for i, name in enumerate(self.graph.topo_sort):
            node = self.graph.get_node(name)
            if node is None:
                continue
            is_scale = True
            if node.layer_type == "Sub":
                in_nodes0 = [
                    self.graph.get_node(in_name) for in_name in node.inputs
                ]
                if in_nodes0[0].layer_type != "Mul" or in_nodes0[
                        1].layer_type != "Const" or in_nodes0[1].value.size != 1:
                    is_scale = False
                    continue
                if exist_act(in_nodes0[0]):
                    is_scale = False
                    continue
                if len(in_nodes0[0].outputs) != 1 or len(
                        in_nodes0[1].outputs) != 1:
                    is_scale = False
                    continue

                in_nodes1 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[0].inputs
                ]
                if in_nodes1[0].layer_type != "Const" or in_nodes1[
                        1].layer_type != "RealDiv" or in_nodes1[
                            0].value.size != 1:
                    is_scale = False
                    continue
                if exist_act(in_nodes1[1]):
                    is_scale = False
                    continue
                if len(in_nodes1[0].outputs) != 1 or len(
                        in_nodes1[1].outputs) != 1:
                    is_scale = False
                    continue

                in_nodes2 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes1[1].inputs
                ]
                if in_nodes2[1].layer_type != "Const" or in_nodes2[
                        1].value.size != 1:
                    is_scale = False
                    continue

                if is_scale:
                    in_node = self.graph.get_node(in_nodes1[1].inputs[0])
                    index = in_node.outputs.index(in_nodes1[1].layer_name)
                    in_node.outputs[index] = node.layer_name
                    node.layer_type = "Scale"
                    node.inputs = [in_node.layer_name]
                    scale = 1.0 / in_nodes2[1].value * in_nodes1[0].value
                    act = None
                    if node.fluid_code.layers[0].param_attr is not None:
                        act = node.fluid_code.layers[0].param_attr.get(
                            "act", None)
                    node.fluid_code.clear()

                    attr = {
                        "scale": scale,
                        "bias": in_nodes0[1].value,
                        "bias_after_scale": True,
                        "act": act
                    }
                    node.fluid_code.add_layer("scale",
                                              inputs=in_node,
                                              output=node,
                                              param_attr=attr)

                    del self.graph.node_map[in_nodes0[0].layer_name]
                    del self.graph.node_map[in_nodes0[1].layer_name]
                    del self.graph.node_map[in_nodes1[0].layer_name]
                    del self.graph.node_map[in_nodes1[1].layer_name]
                    del self.graph.node_map[in_nodes2[1].layer_name]
J
jiangjiajun 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084

    def merge_affine_channel(self):
        for i, name in enumerate(self.graph.topo_sort):
            node = self.graph.get_node(name)
            if node is None:
                continue
            is_affine_channel = True
            if node.layer_type == "RealDiv":
                in_nodes0 = [
                    self.graph.get_node(in_name) for in_name in node.inputs
                ]
                bias_add = True
                if (in_nodes0[0].layer_type != "Sub" and in_nodes0[0].layer_type
                        != "Add") or in_nodes0[1].layer_type != "Const" or len(
                            in_nodes0[1].value.shape) != 3:
                    is_affine_channel = False
                    continue
                if in_nodes0[0].layer_type == "Sub":
                    bias_add = False
                if exist_act(in_nodes0[0]):
                    is_affine_channel = False
                    continue
                if len(in_nodes0[0].outputs) != 1 or len(
                        in_nodes0[1].outputs) != 1:
                    is_affine_channel = False
                    continue
                in_nodes1 = [
                    self.graph.get_node(in_name)
                    for in_name in in_nodes0[0].inputs
                ]
                if len(in_nodes1[0].out_shapes[0]
                       ) != 4 or in_nodes1[1].layer_type != "Const" or len(
                           in_nodes1[1].value.shape) != 3:
                    is_affine_channel = False
                    continue
                if len(in_nodes1[1].outputs) != 1:
                    is_affine_channel = False
                    continue
                channel = in_nodes1[0].out_shapes[0][-1]
                if channel < 0 or channel != in_nodes0[
                        1].value.size or channel != in_nodes1[1].value.size:
                    is_affine_channel = False
                    continue
                if in_nodes0[1].out_shapes[0][-1] != in_nodes0[
                        1].value.size or in_nodes1[1].out_shapes[0][
                            -1] != in_nodes1[1].value.size:
                    is_affine_channel = False
                    continue
                if is_affine_channel:
                    in_node = in_nodes1[0]
                    index = in_node.outputs.index(in_nodes0[0].layer_name)
                    in_node.outputs[index] = node.layer_name
                    node.layer_type = "AffineChannel"
                    node.inputs = [in_node.layer_name]
                    scale = 1.0 / in_nodes0[1].value.flatten()
                    bias = in_nodes1[1].value.flatten(
                    ) / in_nodes0[1].value.flatten()
                    if not bias_add:
                        bias *= -1.0
                    self.op_mapper.weights[node.layer_name + "_scale"] = scale
                    self.op_mapper.weights[node.layer_name + "_bias"] = bias

                    act = None
                    if node.fluid_code.layers[0].param_attr is not None:
                        act = node.fluid_code.layers[0].param_attr.get(
                            "act", None)
                    node.fluid_code.clear()

                    attr = {
                        "dtype": string(scale.dtype),
                        "shape": [channel],
                        "name": string(node.layer_name + "_scale")
                    }
                    node.fluid_code.add_layer("create_parameter",
                                              inputs=None,
                                              output=node.layer_name + "_scale",
                                              param_attr=attr)
                    attr = {
                        "dtype": string(scale.dtype),
                        "shape": [channel],
                        "name": string(node.layer_name + "_bias")
                    }
                    node.fluid_code.add_layer("create_parameter",
                                              inputs=None,
                                              output=node.layer_name + "_bias",
                                              param_attr=attr)
                    inputs = {
                        "x": in_node,
                        "scale": node.layer_name + "_scale",
                        "bias": node.layer_name + "_bias"
                    }
                    attr = {"act": act}
                    node.fluid_code.add_layer("affine_channel",
                                              inputs=inputs,
                                              output=node,
                                              param_attr=attr)

                    del self.graph.node_map[in_nodes0[0].layer_name]
                    del self.graph.node_map[in_nodes0[1].layer_name]
                    del self.graph.node_map[in_nodes1[1].layer_name]