tf_optimizer.py 8.4 KB
Newer Older
J
jiangjiajun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO useless node remove
J
jiangjiajun 已提交
16 17
from x2paddle.op_mapper.tf_op_mapper import TFOpMapper
from x2paddle.core.util import *
J
jiangjiajun 已提交
18 19


J
jiangjiajun 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33
class TFOptimizer(object):
    activation_ops = {
        'Relu': 'relu',
        'Sigmoid': 'sigmoid',
        'Relu6': 'relu6',
        'swish_f32': 'swish'
    }
    layers_with_act = [
        'Conv2D', 'BiasAdd', 'DepthwiseConv2dNative', 'Conv2DBackpropInput',
        'FusedBatchNorm'
    ]
    layers_with_bias = [
        'Conv2D', 'DepthwiseConv2dNative', 'Conv2DBackpropInput'
    ]
34

J
jiangjiajun 已提交
35 36 37 38 39
    def __init__(self, op_mapper):
        self.op_mapper = op_mapper
        self.graph = op_mapper.graph

    def delete_redundance_code(self):
J
jiangjiajun 已提交
40 41 42 43 44
        #        print("==========omit_nodes============")
        #        for node_name in set(self.op_mapper.omit_nodes):
        #            node = self.graph.get_node(node_name)
        #            print(node.layer_name, self.op_mapper.omit_nodes.count(node.layer_name), len(node.outputs), node.outputs)
        #        print("================================")
J
jiangjiajun 已提交
45 46 47
        for node_name in self.graph.topo_sort:
            if node_name in self.op_mapper.omit_nodes:
                node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
48 49
                if node is None:
                    continue
J
jiangjiajun 已提交
50 51 52 53
                omit_freq = self.op_mapper.omit_nodes.count(node_name)
                if len(node.outputs) <= omit_freq:
                    node.fluid_code.clear()

J
jiangjiajun 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                    # remove node from graph
                    input_names = node.inputs
                    output_names = node.outputs
                    for in_name in input_names:
                        in_node = self.graph.get_node(in_name)
                        index = in_node.outputs.index(node_name)
                        del in_node.outputs[index]
                    for out_name in output_names:
                        out_node = self.graph.get_node(out_name)
                        index = out_node.inputs.index(node_name)
                        del out_node.inputs[index]
                    del self.graph.node_map[node_name]

    def strip_graph(self):
        #        print("=============")
        #        for i, node_name in enumerate(self.graph.topo_sort):
        #            node = self.graph.get_node(node_name)
        #            if node is None:
        #                continue
        #            print(node.layer_name, node.inputs)
        #        print("================")
        visited_nodes = set()

        def visit(node_name):
            if node_name in visited_nodes:
                return
            visited_nodes.add(node_name)
            input_names = self.graph.get_node(node_name).inputs
            for in_name in input_names:
                visit(in_name)

        for node_name in self.graph.output_nodes:
            visit(node_name)

#        print("=============visited nodes++++++++++++")
#        for name in visited_nodes:
#            print(name)
#        print("===================================")
        for i, node_name in enumerate(self.graph.topo_sort):
            if node_name not in visited_nodes:
                node = self.graph.get_node(node_name)
                if node is None:
                    continue
                input_names = node.inputs
                output_names = node.outputs
                for in_name in input_names:
                    in_node = self.graph.get_node(in_name)
                    index = in_node.outputs.index(node_name)
                    del in_node.outputs[index]
                for out_name in output_names:
                    out_node = self.graph.get_node(out_name)
                    index = out_node.inputs.index(node_name)
                    del out_node.inputs[index]
                del self.graph.node_map[node_name]

J
jiangjiajun 已提交
109 110 111 112 113
    # TODO activation merge
    def merge_activation(self):
        act_nodes = list()
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
114 115
            if node is None:
                continue
J
jiangjiajun 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            if node.layer_type in self.activation_ops:
                act_nodes.append(node_name)

        for act_node_name in act_nodes:
            node = self.graph.get_node(act_node_name)
            input = self.graph.get_node(node.inputs[0])
            if input.layer_type not in self.layers_with_act:
                continue
            if len(input.fluid_code.layers) == 0:
                continue
            if 'act' in input.fluid_code.layers[
                    -1].param_attr and input.fluid_code.layers[-1].param_attr[
                        'act'] is not None:
                continue
            if len(input.outputs) != 1:
                continue
            input.fluid_code.layers[-1].param_attr['act'] = string(
                self.activation_ops[node.layer_type])
            input.fluid_code.layers[-1].output = node.fluid_code.layers[
                0].output
            self.graph.remove_node(act_node_name)

    # TODO bias merge
    def merge_bias(self):
        for node_name in self.graph.topo_sort:
            node = self.graph.get_node(node_name)
J
jiangjiajun 已提交
142 143
            if node is None:
                continue
J
jiangjiajun 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            if node.layer_type == "BiasAdd":
                input = self.graph.get_node(node.inputs[0])
                if input.layer_type not in self.layers_with_bias:
                    continue
                if len(input.outputs) != 1:
                    continue
                if len(input.fluid_code.layers) == 0:
                    continue
                bias_with_act = False
                if 'act' in node.fluid_code.layers[-1].param_attr:
                    bias_with_act = True
                layer_with_act = False
                if 'act' in input.fluid_code.layers[
                        -1].param_attr and input.fluid_code.layers[
                            -1].param_attr['act'] is not None:
                    layer_with_act = True

                if bias_with_act and layer_with_act:
                    continue
                if not input.fluid_code.layers[-1].param_attr['bias_attr']:
                    bias_name = node.inputs[1]
                    input.fluid_code.layers[-1].param_attr[
                        'bias_attr'] = string(bias_name)
                    input.fluid_code.layers[-1].output = node.fluid_code.layers[
                        0].output
                    if bias_with_act:
                        input.fluid_code.layers[-1].param_attr[
                            'act'] = node.fluid_code.layers[-1].param_attr[
                                'act']
                    node.fluid_code.clear()
J
jiangjiajun 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197


#    def remove_transpose(self):
#        optimize_ops = ['Conv2D', 'MaxPool', 'FusedBatchNorm', 'DepthwiseConv2dNative', 'AvgPool', 'Pad', 'Conv2DBackpropInput', 'ResizeNearestNeighbor', 'ResizeBilinear']
#        for node_name in self.graph.topo_sort:
#            node = self.graph.get_node(node_name)
#            if node.layer_type not in optimize_ops:
#                continue
#            if node.fluid_code.layers[-1].op != "transpose" or node.fluid_code.layers[-1].param_attr["perm"] != [0, 2, 3, 1]:
#                continue
#            output_names = node.outputs
#            can_be_removed = True
#            for out_name in outputs_names:
#                out_node = self.graph.get_node(out_name)
#                if out_node.fluid_code.layers[0].op != "transpose" or out_node.fluid_code.layers[-1].param_attr["perm"] != [0, 3, 1, 2]:
#                    can_be_removed = False
#                    break
#            if can_be_removed and len(output_names) > 0:
#                last_out = node.fluid_code.layers[-1].inputs
#                del node.fluid_code.layers[-1]
#                for out_name in outputs_names:
#                    out_node = self.graph.get_node(out_name)
#                    del out_node.fluid_code.layers[0]
#                    out_node.fluid_code.layers[0].inputs = last_out