提交 915c2575 编写于 作者: N Nicky Chan 提交者: daminglu

Update README to include Audio and High dimensional and screenshot, r… (#475)

上级 2c399c08
......@@ -17,25 +17,28 @@ VisualDL是一个面向深度学习任务设计的可视化工具,包含了sca
实现原生的性能和定制效果。
## 组件
VisualDL 目前支持4种组件:
VisualDL 目前支持以下组件:
- graph
- scalar
- image
- histogram
- image
- audio
- graph
- high dimensional
### Graph
兼容 ONNX(Open Neural Network Exchange)[https://github.com/onnx/onnx], 通过与 python SDK的结合,VisualDL可以兼容包括 PaddlePaddle, pytorch, mxnet在内的大部分主流DNN平台。
### Scalar
可以用于展示训练测试的误差趋势
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/graph_demo.gif" width="60%" />
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_scalar.gif" width="60%"/>
</p>
### Scalar
可以用于展示训练测试的误差趋势
### Histogram
用于可视化任何tensor中元素分布的变化趋势
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_scalar.gif" width="60%"/>
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/histogram.gif" width="60%"/>
</p>
### Image
......@@ -45,12 +48,21 @@ VisualDL 目前支持4种组件:
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_image.gif" width="60%"/>
</p>
### Histogram
### Audio
可用于播放输入或生成的音频样本
用于可视化任何tensor中元素分布的变化趋势
### Graph
兼容 ONNX(Open Neural Network Exchange)[https://github.com/onnx/onnx], 通过与 python SDK的结合,VisualDL可以兼容包括 PaddlePaddle, pytorch, mxnet在内的大部分主流DNN平台。
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/histogram.gif" width="60%"/>
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/graph_demo.gif" width="60%" />
</p>
### High Dimensional
用高维度数据映射在2D/3D来可视化嵌入
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/getting_started/high_dimensional_3d.png" width="60%"/>
</p>
## 快速尝试
......@@ -219,7 +231,7 @@ board 还支持一下参数来实现远程的访问:
- `--host` 设定IP
- `--port` 设定端口
- `--model_pb` 指定 ONNX 格式的模型文件
- `-m / --model_pb` 指定 ONNX 格式的模型文件
### 贡献
......
......@@ -21,28 +21,27 @@ can be integrated into other platforms.
## Component
VisualDL now provides 4 components:
VisualDL provides following components:
- graph
- scalar
- image
- histogram
- image
- audio
- graph
- high dimensional
### Graph
Graph is compatible with ONNX ([Open Neural Network Exchange](https://github.com/onnx/onnx)),
Cooperated with Python SDK, VisualDL can be compatible with most major DNN frameworks, including
PaddlePaddle, PyTorch and MXNet.
### Scalar
Scalar can be used to show the trends of error during training.
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/graph_demo.gif" width="60%" />
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_scalar.gif" width="60%"/>
</p>
### Scalar
Scalar can be used to show the trends of error during training.
### Histogram
Histogram can be used to visualize parameter distribution and trends for any tensor.
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_scalar.gif" width="60%"/>
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/histogram.gif" width="60%"/>
</p>
### Image
......@@ -52,11 +51,23 @@ Image can be used to visualize any tensor or intermediate generated image.
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/loss_image.gif" width="60%"/>
</p>
### Histogram
Histogram can be used to visualize parameter distribution and trends for any tensor.
### Audio
Audio can be used to play input audio samples or generated audio samples.
### Graph
Graph is compatible with ONNX ([Open Neural Network Exchange](https://github.com/onnx/onnx)),
Cooperated with Python SDK, VisualDL can be compatible with most major DNN frameworks, including
PaddlePaddle, PyTorch and MXNet.
<p align="center">
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/histogram.gif" width="60%"/>
<img src="https://raw.githubusercontent.com/daming-lu/large_files/master/graph_demo.gif" width="60%" />
</p>
### High Dimensional
High Dimensional can be used to visualize data embeddings by projecting high-dimensional data into 2D / 3D.
<p align="center">
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/getting_started/high_dimensional_3d.png" width="60%"/>
</p>
## Quick Start
......@@ -233,7 +244,7 @@ visualDL also supports following optional parameters:
- `--host` set IP
- `--port` set port
- `--model_pb` specify ONNX format for model file to view graph
- `-m / --model_pb` specify ONNX format for model file to view graph
### Contribute
......
......@@ -46,7 +46,7 @@ for step in steps:
- 启动visualdl service即可通过浏览器查看日志的可视化结果。
```shell
visualdl --logdir ./log --port 8080
visualdl --logdir ./log --model_pb <path_to_onnx_model> # onnx model and port are optional
```
### 功能全
1. Scalar. 支持Scalar打点数据展示,如上图所示:
......
......@@ -48,7 +48,7 @@ for step in steps:
- Launch Visual DL service and you can see the visualization results.
```shell
visualdl --logdir ./log --port 8080
visualdl --logdir ./log --model_pb <path_to_onnx_model> --port 8080 # onnx model and port are optional
```
### Comprehensive Usability
......@@ -92,7 +92,7 @@ show the trend of parameter distribution.
<img src="https://raw.githubusercontent.com/PaddlePaddle/VisualDL/develop/docs/getting_started/graph.png" height="250" width="400"/>
</p>
6. High Dimensional: visualize data embeddings by projects high-dimensional data into 2D / 3D.
6. High Dimensional: visualize data embeddings by projecting high-dimensional data into 2D / 3D.
- Help users understand the similarity, correlation of different objects (e.g. word / image)
- Map objects to vectors in vector space to visualize distance of neighbors and form clusters
- Support dimension reduction algorithm like PCA, T-SNE
......
......@@ -88,7 +88,7 @@ VisualDL 的 C++ SDK 与 Python 的基本一致,上面Python示例对应的C++
VisualDL 支持开源的 [ONNX](https://github.com/onnx/onnx)模型结构的可视化,目前ONNX支持包括 `pytorch`, `Caffe2`, `Caffe`, `MxNet` 在内的多种深度学习平台的模型结构的转化。
```
visualdl --logdir somedir --model_pb <path_to_model>
visualdl --logdir somedir --model_pb <path_to_onnx_model>
```
比如mnist,会得到如下graph
......
......@@ -95,7 +95,7 @@ VisualDL supports the visualization for the format in [ONNX](https://github.com/
Currently, ONNX supports format conversion among various deep learning frameworks such as `MXNet`, `PyTorch`, `Caffe2`, `Caffe`.
```
visualdl --logdir somedir --model_pb <path_to_model>
visualdl --logdir somedir --model_pb <path_to_onnx_model>
```
For example, for the MNIST dataset, Graph component can render model graph as below:
......
......@@ -38,6 +38,11 @@ export default {
title: 'SCALARS',
name: 'scalars',
},
{
url: '/histograms',
title: 'HISTOGRAMS',
name: 'histograms',
},
{
url: '/images',
title: 'IMAGES',
......@@ -49,20 +54,15 @@ export default {
name: 'audio',
},
{
url: '/histograms',
title: 'HISTOGRAMS',
name: 'histograms',
url: '/texts',
title: 'TEXTS',
name: 'texts',
},
{
url: '/graphs',
title: 'GRAPHS',
name: 'graphs',
},
{
url: '/texts',
title: 'TEXTS',
name: 'texts',
},
{
url: '/HighDimensional',
title: 'HighDimensional',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册