Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
acad4fad
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
acad4fad
编写于
5月 17, 2021
作者:
B
bjjwwang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
resnet 50 v2
上级
0e406beb
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
342 addition
and
0 deletion
+342
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/README.md
python/examples/pipeline/PaddleClas/ResNet_V2_50/README.md
+20
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/README_CN.md
...on/examples/pipeline/PaddleClas/ResNet_V2_50/README_CN.md
+21
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/benchmark.py
...on/examples/pipeline/PaddleClas/ResNet_V2_50/benchmark.py
+134
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/benchmark.sh
...on/examples/pipeline/PaddleClas/ResNet_V2_50/benchmark.sh
+44
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/config.yml
python/examples/pipeline/PaddleClas/ResNet_V2_50/config.yml
+33
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/daisy.jpg
python/examples/pipeline/PaddleClas/ResNet_V2_50/daisy.jpg
+0
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/pipeline_http_client.py
.../pipeline/PaddleClas/ResNet_V2_50/pipeline_http_client.py
+19
-0
python/examples/pipeline/PaddleClas/ResNet_V2_50/resnet50_web_service.py
.../pipeline/PaddleClas/ResNet_V2_50/resnet50_web_service.py
+71
-0
未找到文件。
python/examples/pipeline/PaddleClas/ResNet_V2_50/README.md
0 → 100644
浏览文件 @
acad4fad
# Imagenet Pipeline WebService
This document will takes Imagenet service as an example to introduce how to use Pipeline WebService.
## Get model
```
python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
tar -xzvf resnet_v2_50_imagenet.tar.gz
```
## Start server
```
python resnet50_web_service.py &>log.txt &
```
## RPC test
```
python pipeline_rpc_client.py
```
python/examples/pipeline/PaddleClas/ResNet_V2_50/README_CN.md
0 → 100644
浏览文件 @
acad4fad
# Imagenet Pipeline WebService
这里以 Imagenet 服务为例来介绍 Pipeline WebService 的使用。
## 获取模型
```
python -m paddle_serving_app.package --get_model resnet_v2_50_imagenet
tar -xzvf resnet_v2_50_imagenet.tar.gz
```
## 启动服务
```
python resnet50_web_service.py &>log.txt &
```
## 测试
```
python pipeline_rpc_client.py
```
python/examples/pipeline/PaddleClas/ResNet_V2_50/benchmark.py
0 → 100644
浏览文件 @
acad4fad
import
sys
import
os
import
base64
import
yaml
import
requests
import
time
import
json
try
:
from
paddle_serving_server_gpu.pipeline
import
PipelineClient
except
ImportError
:
from
paddle_serving_server.pipeline
import
PipelineClient
import
numpy
as
np
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
def
parse_benchmark
(
filein
,
fileout
):
with
open
(
filein
,
"r"
)
as
fin
:
res
=
yaml
.
load
(
fin
)
del_list
=
[]
for
key
in
res
[
"DAG"
].
keys
():
if
"call"
in
key
:
del_list
.
append
(
key
)
for
key
in
del_list
:
del
res
[
"DAG"
][
key
]
with
open
(
fileout
,
"w"
)
as
fout
:
yaml
.
dump
(
res
,
fout
,
default_flow_style
=
False
)
def
gen_yml
(
device
,
gpu_id
):
fin
=
open
(
"config.yml"
,
"r"
)
config
=
yaml
.
load
(
fin
)
fin
.
close
()
config
[
"dag"
][
"tracer"
]
=
{
"interval_s"
:
10
}
if
device
==
"gpu"
:
config
[
"op"
][
"imagenet"
][
"local_service_conf"
][
"device_type"
]
=
1
config
[
"op"
][
"imagenet"
][
"local_service_conf"
][
"devices"
]
=
gpu_id
else
:
config
[
"op"
][
"imagenet"
][
"local_service_conf"
][
"device_type"
]
=
0
with
open
(
"config2.yml"
,
"w"
)
as
fout
:
yaml
.
dump
(
config
,
fout
,
default_flow_style
=
False
)
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
def
run_http
(
idx
,
batch_size
):
print
(
"start thread ({})"
.
format
(
idx
))
url
=
"http://127.0.0.1:18000/imagenet/prediction"
start
=
time
.
time
()
with
open
(
os
.
path
.
join
(
"."
,
"daisy.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
keys
,
values
=
[],
[]
for
i
in
range
(
batch_size
):
keys
.
append
(
"image_{}"
.
format
(
i
))
values
.
append
(
image
)
data
=
{
"key"
:
keys
,
"value"
:
values
}
latency_list
=
[]
start_time
=
time
.
time
()
total_num
=
0
while
True
:
l_start
=
time
.
time
()
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
print
(
r
.
json
())
l_end
=
time
.
time
()
latency_list
.
append
(
l_end
*
1000
-
l_start
*
1000
)
total_num
+=
1
if
time
.
time
()
-
start_time
>
20
:
break
end
=
time
.
time
()
return
[[
end
-
start
],
latency_list
,
[
total_num
]]
def
multithread_http
(
thread
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
start
=
time
.
time
()
result
=
multi_thread_runner
.
run
(
run_http
,
thread
,
batch_size
)
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
total_number
=
0
for
i
in
range
(
thread
):
avg_cost
+=
result
[
0
][
i
]
total_number
+=
result
[
2
][
i
]
avg_cost
=
avg_cost
/
thread
print
(
"Total cost: {}s"
.
format
(
total_cost
))
print
(
"Each thread cost: {}s. "
.
format
(
avg_cost
))
print
(
"Total count: {}. "
.
format
(
total_number
))
print
(
"AVG QPS: {} samples/s"
.
format
(
batch_size
*
total_number
/
total_cost
))
show_latency
(
result
[
1
])
def
run_rpc
(
thread
,
batch_size
):
client
=
PipelineClient
()
client
.
connect
([
'127.0.0.1:18080'
])
start
=
time
.
time
()
test_img_dir
=
"imgs/"
for
img_file
in
os
.
listdir
(
test_img_dir
):
with
open
(
os
.
path
.
join
(
test_img_dir
,
img_file
),
'rb'
)
as
file
:
image_data
=
file
.
read
()
image
=
cv2_to_base64
(
image_data
)
start_time
=
time
.
time
()
while
True
:
ret
=
client
.
predict
(
feed_dict
=
{
"image"
:
image
},
fetch
=
[
"res"
])
if
time
.
time
()
-
start_time
>
10
:
break
end
=
time
.
time
()
return
[[
end
-
start
]]
def
multithread_rpc
(
thraed
,
batch_size
):
multi_thread_runner
=
MultiThreadRunner
()
result
=
multi_thread_runner
.
run
(
run_rpc
,
thread
,
batch_size
)
if
__name__
==
"__main__"
:
if
sys
.
argv
[
1
]
==
"yaml"
:
mode
=
sys
.
argv
[
2
]
# brpc/ local predictor
thread
=
int
(
sys
.
argv
[
3
])
device
=
sys
.
argv
[
4
]
if
device
==
"gpu"
:
gpu_id
=
sys
.
argv
[
5
]
else
:
gpu_id
=
None
gen_yml
(
device
,
gpu_id
)
elif
sys
.
argv
[
1
]
==
"run"
:
mode
=
sys
.
argv
[
2
]
# http/ rpc
thread
=
int
(
sys
.
argv
[
3
])
batch_size
=
int
(
sys
.
argv
[
4
])
if
mode
==
"http"
:
multithread_http
(
thread
,
batch_size
)
elif
mode
==
"rpc"
:
multithread_rpc
(
thread
,
batch_size
)
elif
sys
.
argv
[
1
]
==
"dump"
:
filein
=
sys
.
argv
[
2
]
fileout
=
sys
.
argv
[
3
]
parse_benchmark
(
filein
,
fileout
)
python/examples/pipeline/PaddleClas/ResNet_V2_50/benchmark.sh
0 → 100644
浏览文件 @
acad4fad
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.6"
modelname
=
"clas-ResNet_v2_50"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
sleep
3
# Create yaml,If you already have the config.yaml, ignore it.
#python3 benchmark.py yaml local_predictor 1 gpu
rm
-rf
profile_log_
$modelname
echo
"Starting HTTP Clients..."
# Start a client in each thread, tesing the case of multiple threads.
for
thread_num
in
1 2 4 8 12 16
do
for
batch_size
in
1
do
echo
"----
${
modelname
}
thread num:
${
thread_num
}
batch size:
${
batch_size
}
mode:http ----"
>>
profile_log_
$modelname
# Start one web service, If you start the service yourself, you can ignore it here.
#python3 web_service.py >web.log 2>&1 &
#sleep 3
# --id is the serial number of the GPU card, Must be the same as the gpu id used by the server.
nvidia-smi
--id
=
3
--query-gpu
=
memory.used
--format
=
csv
-lms
1000
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
3
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
1000
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
# Start http client
python3 benchmark.py run http
$thread_num
$batch_size
>
profile 2>&1
# Collect CPU metrics, Filter data that is zero momentarily, Record the maximum value of GPU memory and the average value of GPU utilization
python3 cpu_utilization.py
>>
profile_log_
$modelname
grep
-av
'^0 %'
gpu_utilization.log
>
gpu_utilization.log.tmp
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "MAX_GPU_MEMORY:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
-F
' '
'{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }'
gpu_utilization.log.tmp
>>
profile_log_
$modelname
# Show profiles
python3 ../../../util/show_profile.py profile
$thread_num
>>
profile_log_
$modelname
tail
-n
8 profile
>>
profile_log_
$modelname
echo
''
>>
profile_log_
$modelname
done
done
# Kill all nvidia-smi background task.
pkill nvidia-smi
python/examples/pipeline/PaddleClas/ResNet_V2_50/config.yml
0 → 100644
浏览文件 @
acad4fad
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num
:
1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port
:
18080
rpc_port
:
9993
dag
:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op
:
False
op
:
imagenet
:
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf
:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency
:
1
#uci模型路径
model_config
:
resnet_v2_50_imagenet_model/
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type
:
1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices
:
"
0"
# "0,1"
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type
:
local_predictor
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list
:
[
"
score"
]
python/examples/pipeline/PaddleClas/ResNet_V2_50/daisy.jpg
0 → 100644
浏览文件 @
acad4fad
38.8 KB
python/examples/pipeline/PaddleClas/ResNet_V2_50/pipeline_http_client.py
0 → 100644
浏览文件 @
acad4fad
import
numpy
as
np
import
requests
import
json
import
cv2
import
base64
import
os
def
cv2_to_base64
(
image
):
return
base64
.
b64encode
(
image
).
decode
(
'utf8'
)
if
__name__
==
"__main__"
:
url
=
"http://127.0.0.1:18000/imagenet/prediction"
with
open
(
os
.
path
.
join
(
"."
,
"daisy.jpg"
),
'rb'
)
as
file
:
image_data1
=
file
.
read
()
image
=
cv2_to_base64
(
image_data1
)
data
=
{
"key"
:
[
"image"
],
"value"
:
[
image
]}
for
i
in
range
(
1
):
r
=
requests
.
post
(
url
=
url
,
data
=
json
.
dumps
(
data
))
print
(
r
.
json
())
python/examples/pipeline/PaddleClas/ResNet_V2_50/resnet50_web_service.py
0 → 100644
浏览文件 @
acad4fad
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
from
paddle_serving_app.reader
import
Sequential
,
URL2Image
,
Resize
,
CenterCrop
,
RGB2BGR
,
Transpose
,
Div
,
Normalize
,
Base64ToImage
from
paddle_serving_server.web_service
import
WebService
,
Op
import
logging
import
numpy
as
np
import
base64
,
cv2
class
ImagenetOp
(
Op
):
def
init_op
(
self
):
self
.
seq
=
Sequential
([
Resize
(
256
),
CenterCrop
(
224
),
RGB2BGR
(),
Transpose
((
2
,
0
,
1
)),
Div
(
255
),
Normalize
([
0.485
,
0.456
,
0.406
],
[
0.229
,
0.224
,
0.225
],
True
)
])
self
.
label_dict
=
{}
label_idx
=
0
with
open
(
"imagenet.label"
)
as
fin
:
for
line
in
fin
:
self
.
label_dict
[
label_idx
]
=
line
.
strip
()
label_idx
+=
1
def
preprocess
(
self
,
input_dicts
,
data_id
,
log_id
):
(
_
,
input_dict
),
=
input_dicts
.
items
()
batch_size
=
len
(
input_dict
.
keys
())
imgs
=
[]
for
key
in
input_dict
.
keys
():
data
=
base64
.
b64decode
(
input_dict
[
key
].
encode
(
'utf8'
))
data
=
np
.
fromstring
(
data
,
np
.
uint8
)
im
=
cv2
.
imdecode
(
data
,
cv2
.
IMREAD_COLOR
)
img
=
self
.
seq
(
im
)
imgs
.
append
(
img
[
np
.
newaxis
,
:].
copy
())
input_imgs
=
np
.
concatenate
(
imgs
,
axis
=
0
)
return
{
"image"
:
input_imgs
},
False
,
None
,
""
def
postprocess
(
self
,
input_dicts
,
fetch_dict
,
log_id
):
score_list
=
fetch_dict
[
"score"
]
result
=
{
"label"
:
[],
"prob"
:
[]}
for
score
in
score_list
:
score
=
score
.
tolist
()
max_score
=
max
(
score
)
result
[
"label"
].
append
(
self
.
label_dict
[
score
.
index
(
max_score
)]
.
strip
().
replace
(
","
,
""
))
result
[
"prob"
].
append
(
max_score
)
result
[
"label"
]
=
str
(
result
[
"label"
])
result
[
"prob"
]
=
str
(
result
[
"prob"
])
return
result
,
None
,
""
class
ImageService
(
WebService
):
def
get_pipeline_response
(
self
,
read_op
):
image_op
=
ImagenetOp
(
name
=
"imagenet"
,
input_ops
=
[
read_op
])
return
image_op
uci_service
=
ImageService
(
name
=
"imagenet"
)
uci_service
.
prepare_pipeline_config
(
"config2.yml"
)
uci_service
.
run_service
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录