提交 0e406beb 编写于 作者: B bjjwwang

fix pddet benchmark

上级 a4d6e1aa
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-HRNet_W18_C"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-MobileNetV1"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-MobileNetV3_large_x1_0"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-ResNeXt101_vd_64x4d"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-ResNet50_vd"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-ResNet50_vd_FPGM"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-ResNet50_vd_KL"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-ResNet50_vd_PACT"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
export FLAGS_profile_pipeline=1
alias python3="python3.6"
modelname="clas-DarkNet53"
modelname="clas-ShuffleNetV2_x1_0"
# HTTP
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
......
......@@ -46,23 +46,43 @@ def run_http(idx, batch_size):
with open(os.path.join(".", "000000570688.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
latency_list = []
start = time.time()
total_num = 0
while True:
l_start = time.time()
data = {"key": [], "value": []}
for j in range(batch_size):
data["key"].append("image_" + str(j))
data["value"].append(image)
r = requests.post(url=url, data=json.dumps(data))
l_end = time.time()
total_num += 1
end = time.time()
latency_list.append(l_end * 1000 - l_start * 1000)
if end - start > 70:
print("70s end")
#print("70s end")
break
return [[end - start]]
return [[end - start], latency_list, [total_num]]
def multithread_http(thread, batch_size):
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(run_http , thread, batch_size)
start = time.time()
result = multi_thread_runner.run(run_http, thread, batch_size)
end = time.time()
total_cost = end - start
avg_cost = 0
total_number = 0
for i in range(thread):
avg_cost += result[0][i]
total_number += result[2][i]
avg_cost = avg_cost / thread
print("Total cost: {}s".format(total_cost))
print("Each thread cost: {}s. ".format(avg_cost))
print("Total count: {}. ".format(total_number))
print("AVG QPS: {} samples/s".format(batch_size * total_number /
total_cost))
show_latency(result[1])
def run_rpc(thread, batch_size):
pass
......
export FLAGS_profile_pipeline=1
alias python3="python3.7"
modelname="faster_rcnn_r50_fpn_1x_coco"
gpu_id="0"
benchmark_config_filename="benchmark_config.yaml"
alias python3="python3.6"
modelname="det-FasterRCNN"
# HTTP
ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
sleep 3
python3 benchmark.py yaml local_predictor 1 gpu $gpu_id
# Create yaml,If you already have the config.yaml, ignore it.
#python3 benchmark.py yaml local_predictor 1 gpu
rm -rf profile_log_$modelname
for thread_num in 1
echo "Starting HTTP Clients..."
# Start a client in each thread, tesing the case of multiple threads.
for thread_num in 1 2 4 8 12 16
do
for batch_size in 1
for batch_size in 1
do
echo "#----FasterRCNN thread num: $thread_num batch size: $batch_size mode:http ----" >>profile_log_$modelname
rm -rf PipelineServingLogs
rm -rf cpu_utilization.py
python3 web_service.py >web.log 2>&1 &
sleep 3
nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
echo "----${modelname} thread num: ${thread_num} batch size: ${batch_size} mode:http ----" >>profile_log_$modelname
# Start one web service, If you start the service yourself, you can ignore it here.
#python3 web_service.py >web.log 2>&1 &
#sleep 3
# --id is the serial number of the GPU card, Must be the same as the gpu id used by the server.
nvidia-smi --id=3 --query-gpu=memory.used --format=csv -lms 1000 > gpu_use.log 2>&1 &
nvidia-smi --id=3 --query-gpu=utilization.gpu --format=csv -lms 1000 > gpu_utilization.log 2>&1 &
echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
python3 benchmark.py run http $thread_num $batch_size
python3 cpu_utilization.py >>profile_log_$modelname
python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname
ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv benchmark.tmp benchmark.log
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname
cat benchmark.log >> profile_log_$modelname
python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname
#rm -rf gpu_use.log gpu_utilization.log
# Start http client
python3 benchmark.py run http $thread_num $batch_size > profile 2>&1
# Collect CPU metrics, Filter data that is zero momentarily, Record the maximum value of GPU memory and the average value of GPU utilization
python3 cpu_utilization.py >> profile_log_$modelname
grep -av '^0 %' gpu_utilization.log > gpu_utilization.log.tmp
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$modelname
awk -F' ' '{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }' gpu_utilization.log.tmp >> profile_log_$modelname
# Show profiles
python3 ../../../util/show_profile.py profile $thread_num >> profile_log_$modelname
tail -n 8 profile >> profile_log_$modelname
echo '' >> profile_log_$modelname
done
done
# Kill all nvidia-smi background task.
pkill nvidia-smi
......@@ -36,7 +36,7 @@ def gen_yml(device, gpu_id):
config["dag"]["tracer"] = {"interval_s": 30}
if device == "gpu":
config["op"]["ppyolo_mbv3"]["local_service_conf"]["device_type"] = 1
config["op"]["ppyolo_mbv3"]["local_service_conf"]["devices"] = gpu_id
config["op"]["ppyolo_mbv3"]["local_service_conf"]["devices"] = gpu_id
with open("config2.yml", "w") as fout:
yaml.dump(config, fout, default_flow_style=False)
......@@ -46,23 +46,43 @@ def run_http(idx, batch_size):
with open(os.path.join(".", "000000570688.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
latency_list = []
start = time.time()
total_num = 0
while True:
l_start = time.time()
data = {"key": [], "value": []}
for j in range(batch_size):
data["key"].append("image_" + str(j))
data["value"].append(image)
r = requests.post(url=url, data=json.dumps(data))
l_end = time.time()
total_num += 1
end = time.time()
latency_list.append(l_end * 1000 - l_start * 1000)
if end - start > 70:
print("70s end")
#print("70s end")
break
return [[end - start]]
return [[end - start], latency_list, [total_num]]
def multithread_http(thread, batch_size):
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(run_http , thread, batch_size)
start = time.time()
result = multi_thread_runner.run(run_http, thread, batch_size)
end = time.time()
total_cost = end - start
avg_cost = 0
total_number = 0
for i in range(thread):
avg_cost += result[0][i]
total_number += result[2][i]
avg_cost = avg_cost / thread
print("Total cost: {}s".format(total_cost))
print("Each thread cost: {}s. ".format(avg_cost))
print("Total count: {}. ".format(total_number))
print("AVG QPS: {} samples/s".format(batch_size * total_number /
total_cost))
show_latency(result[1])
def run_rpc(thread, batch_size):
pass
......
export FLAGS_profile_pipeline=1
alias python3="python3.7"
modelname="ppyolo_mbv3_large"
gpu_id="0"
benchmark_config_filename="benchmark_config.yaml"
alias python3="python3.6"
modelname="det-PPYoloMbv3"
# HTTP
ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
sleep 3
python3 benchmark.py yaml local_predictor 1 gpu $gpu_id
# Create yaml,If you already have the config.yaml, ignore it.
#python3 benchmark.py yaml local_predictor 1 gpu
rm -rf profile_log_$modelname
for thread_num in 1
echo "Starting HTTP Clients..."
# Start a client in each thread, tesing the case of multiple threads.
for thread_num in 1 2 4 8 12 16
do
for batch_size in 1
for batch_size in 1
do
echo "#----PPyolo thread num: $thread_num batch size: $batch_size mode:http ----" >>profile_log_$modelname
rm -rf PipelineServingLogs
rm -rf cpu_utilization.py
python3 web_service.py >web.log 2>&1 &
sleep 3
nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
echo "----${modelname} thread num: ${thread_num} batch size: ${batch_size} mode:http ----" >>profile_log_$modelname
# Start one web service, If you start the service yourself, you can ignore it here.
#python3 web_service.py >web.log 2>&1 &
#sleep 3
# --id is the serial number of the GPU card, Must be the same as the gpu id used by the server.
nvidia-smi --id=3 --query-gpu=memory.used --format=csv -lms 1000 > gpu_use.log 2>&1 &
nvidia-smi --id=3 --query-gpu=utilization.gpu --format=csv -lms 1000 > gpu_utilization.log 2>&1 &
echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
python3 benchmark.py run http $thread_num $batch_size
python3 cpu_utilization.py >>profile_log_$modelname
python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname
ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv benchmark.tmp benchmark.log
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname
cat benchmark.log >> profile_log_$modelname
python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname
#rm -rf gpu_use.log gpu_utilization.log
# Start http client
python3 benchmark.py run http $thread_num $batch_size > profile 2>&1
# Collect CPU metrics, Filter data that is zero momentarily, Record the maximum value of GPU memory and the average value of GPU utilization
python3 cpu_utilization.py >> profile_log_$modelname
grep -av '^0 %' gpu_utilization.log > gpu_utilization.log.tmp
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$modelname
awk -F' ' '{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }' gpu_utilization.log.tmp >> profile_log_$modelname
# Show profiles
python3 ../../../util/show_profile.py profile $thread_num >> profile_log_$modelname
tail -n 8 profile >> profile_log_$modelname
echo '' >> profile_log_$modelname
done
done
# Kill all nvidia-smi background task.
pkill nvidia-smi
......@@ -35,8 +35,8 @@ def gen_yml(device, gpu_id):
fin.close()
config["dag"]["tracer"] = {"interval_s": 30}
if device == "gpu":
config["op"]["faster_rcnn"]["local_service_conf"]["device_type"] = 1
config["op"]["faster_rcnn"]["local_service_conf"]["devices"] = gpu_id
config["op"]["yolov3"]["local_service_conf"]["device_type"] = 1
config["op"]["yolov3"]["local_service_conf"]["devices"] = gpu_id
with open("config2.yml", "w") as fout:
yaml.dump(config, fout, default_flow_style=False)
......@@ -46,23 +46,43 @@ def run_http(idx, batch_size):
with open(os.path.join(".", "000000570688.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
latency_list = []
start = time.time()
total_num = 0
while True:
l_start = time.time()
data = {"key": [], "value": []}
for j in range(batch_size):
data["key"].append("image_" + str(j))
data["value"].append(image)
r = requests.post(url=url, data=json.dumps(data))
l_end = time.time()
total_num += 1
end = time.time()
latency_list.append(l_end * 1000 - l_start * 1000)
if end - start > 70:
print("70s end")
#print("70s end")
break
return [[end - start]]
return [[end - start], latency_list, [total_num]]
def multithread_http(thread, batch_size):
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(run_http , thread, batch_size)
start = time.time()
result = multi_thread_runner.run(run_http, thread, batch_size)
end = time.time()
total_cost = end - start
avg_cost = 0
total_number = 0
for i in range(thread):
avg_cost += result[0][i]
total_number += result[2][i]
avg_cost = avg_cost / thread
print("Total cost: {}s".format(total_cost))
print("Each thread cost: {}s. ".format(avg_cost))
print("Total count: {}. ".format(total_number))
print("AVG QPS: {} samples/s".format(batch_size * total_number /
total_cost))
show_latency(result[1])
def run_rpc(thread, batch_size):
pass
......
export FLAGS_profile_pipeline=1
alias python3="python3.7"
modelname="yolov3_darknet53_270e_coco"
gpu_id="0"
benchmark_config_filename="benchmark_config.yaml"
alias python3="python3.6"
modelname="det-yolov3"
# HTTP
ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
#ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
sleep 3
python3 benchmark.py yaml local_predictor 1 cpu
# Create yaml,If you already have the config.yaml, ignore it.
#python3 benchmark.py yaml local_predictor 1 gpu
rm -rf profile_log_$modelname
for thread_num in 1 8 16
echo "Starting HTTP Clients..."
# Start a client in each thread, tesing the case of multiple threads.
for thread_num in 1 2 4 8 12 16
do
for batch_size in 1
for batch_size in 1
do
echo "#----Yolov3 thread num: $thread_num batch size: $batch_size mode:http ----" >>profile_log_$modelname
rm -rf PipelineServingLogs
rm -rf cpu_utilization.py
python3 web_service.py >web.log 2>&1 &
sleep 3
nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 &
nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 &
echo "----${modelname} thread num: ${thread_num} batch size: ${batch_size} mode:http ----" >>profile_log_$modelname
# Start one web service, If you start the service yourself, you can ignore it here.
#python3 web_service.py >web.log 2>&1 &
#sleep 3
# --id is the serial number of the GPU card, Must be the same as the gpu id used by the server.
nvidia-smi --id=3 --query-gpu=memory.used --format=csv -lms 1000 > gpu_use.log 2>&1 &
nvidia-smi --id=3 --query-gpu=utilization.gpu --format=csv -lms 1000 > gpu_utilization.log 2>&1 &
echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py
python3 benchmark.py run http $thread_num $batch_size
python3 cpu_utilization.py >>profile_log_$modelname
python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname
ps -ef | grep web_service | awk '{print $2}' | xargs kill -9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv benchmark.tmp benchmark.log
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname
cat benchmark.log >> profile_log_$modelname
python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname
#rm -rf gpu_use.log gpu_utilization.log
# Start http client
python3 benchmark.py run http $thread_num $batch_size > profile 2>&1
# Collect CPU metrics, Filter data that is zero momentarily, Record the maximum value of GPU memory and the average value of GPU utilization
python3 cpu_utilization.py >> profile_log_$modelname
grep -av '^0 %' gpu_utilization.log > gpu_utilization.log.tmp
awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "MAX_GPU_MEMORY:", max}' gpu_use.log >> profile_log_$modelname
awk -F' ' '{sum+=$1} END {print "GPU_UTILIZATION:", sum/NR, sum, NR }' gpu_utilization.log.tmp >> profile_log_$modelname
# Show profiles
python3 ../../../util/show_profile.py profile $thread_num >> profile_log_$modelname
tail -n 8 profile >> profile_log_$modelname
echo '' >> profile_log_$modelname
done
done
# Kill all nvidia-smi background task.
pkill nvidia-smi
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册