提交 4dff02f3 编写于 作者: M MRXLT

Merge remote-tracking branch 'upstream/develop' into 0.2.2-dev

sync
......@@ -264,8 +264,8 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"url": "https://pa
### About Efficiency
- [How to profile Paddle Serving latency?](python/examples/util)
- [How to optimize performance?(Chinese)](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [Deploy multi-services on one GPU(Chinese)](doc/PERFORMANCE_OPTIM_CN.md)
- [How to optimize performance?(Chinese)](doc/PERFORMANCE_OPTIM_CN.md)
- [Deploy multi-services on one GPU(Chinese)](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [CPU Benchmarks(Chinese)](doc/BENCHMARKING.md)
- [GPU Benchmarks(Chinese)](doc/GPU_BENCHMARKING.md)
......
......@@ -270,8 +270,8 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"url": "https://pa
### 关于Paddle Serving性能
- [如何测试Paddle Serving性能?](python/examples/util/)
- [如何优化性能?](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [在一张GPU上启动多个预测服务](doc/PERFORMANCE_OPTIM_CN.md)
- [如何优化性能?](doc/PERFORMANCE_OPTIM_CN.md)
- [在一张GPU上启动多个预测服务](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [CPU版Benchmarks](doc/BENCHMARKING.md)
- [GPU版Benchmarks](doc/GPU_BENCHMARKING.md)
......
......@@ -83,9 +83,6 @@ func JsonReq(method, requrl string, timeout int, kv *map[string]string,
}
func GetHdfsMeta(src string) (master, ugi, path string, err error) {
//src = "hdfs://root:rootpasst@st1-inf-platform0.st01.baidu.com:54310/user/mis_user/news_dnn_ctr_cube_1/1501836820/news_dnn_ctr_cube_1_part54.tar"
//src = "hdfs://st1-inf-platform0.st01.baidu.com:54310/user/mis_user/news_dnn_ctr_cube_1/1501836820/news_dnn_ctr_cube_1_part54.tar"
ugiBegin := strings.Index(src, "//")
ugiPos := strings.LastIndex(src, "@")
if ugiPos != -1 && ugiBegin != -1 {
......
......@@ -69,9 +69,15 @@ class ModelRes {
const std::vector<int64_t>& get_int64_by_name(const std::string& name) {
return _int64_value_map[name];
}
std::vector<int64_t>&& get_int64_by_name_with_rv(const std::string& name) {
return std::move(_int64_value_map[name]);
}
const std::vector<float>& get_float_by_name(const std::string& name) {
return _float_value_map[name];
}
std::vector<float>&& get_float_by_name_with_rv(const std::string& name) {
return std::move(_float_value_map[name]);
}
const std::vector<int>& get_shape(const std::string& name) {
return _shape_map[name];
}
......@@ -121,10 +127,18 @@ class PredictorRes {
const std::string& name) {
return _models[model_idx].get_int64_by_name(name);
}
std::vector<int64_t>&& get_int64_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_int64_by_name_with_rv(name));
}
const std::vector<float>& get_float_by_name(const int model_idx,
const std::string& name) {
return _models[model_idx].get_float_by_name(name);
}
std::vector<float>&& get_float_by_name_with_rv(const int model_idx,
const std::string& name) {
return std::move(_models[model_idx].get_float_by_name_with_rv(name));
}
const std::vector<int>& get_shape(const int model_idx,
const std::string& name) {
return _models[model_idx].get_shape(name);
......
......@@ -258,9 +258,10 @@ int PredictorClient::batch_predict(
ModelRes model;
model.set_engine_name(output.engine_name());
int idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
int shape_size = output.insts(0).tensor_array(idx).shape_size();
VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
<< shape_size;
......@@ -279,9 +280,9 @@ int PredictorClient::batch_predict(
idx += 1;
}
idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
if (_fetch_name_to_type[name] == 0) {
VLOG(2) << "ferch var " << name << "type int";
model._int64_value_map[name].resize(
......@@ -536,9 +537,9 @@ int PredictorClient::numpy_predict(
ModelRes model;
model.set_engine_name(output.engine_name());
int idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
int shape_size = output.insts(0).tensor_array(idx).shape_size();
VLOG(2) << "fetch var " << name << " index " << idx << " shape size "
<< shape_size;
......@@ -557,9 +558,10 @@ int PredictorClient::numpy_predict(
idx += 1;
}
idx = 0;
for (auto &name : fetch_name) {
// int idx = _fetch_name_to_idx[name];
int idx = 0;
if (_fetch_name_to_type[name] == 0) {
VLOG(2) << "ferch var " << name << "type int";
model._int64_value_map[name].resize(
......
......@@ -32,14 +32,23 @@ PYBIND11_MODULE(serving_client, m) {
.def(py::init())
.def("get_int64_by_name",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_int64_by_name(model_idx, name);
},
py::return_value_policy::reference)
// see more: https://github.com/pybind/pybind11/issues/1042
std::vector<int64_t> *ptr = new std::vector<int64_t>(
std::move(self.get_int64_by_name_with_rv(model_idx, name)));
auto capsule = py::capsule(ptr, [](void *p) {
delete reinterpret_cast<std::vector<int64_t> *>(p);
});
return py::array(ptr->size(), ptr->data(), capsule);
})
.def("get_float_by_name",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_float_by_name(model_idx, name);
},
py::return_value_policy::reference)
std::vector<float> *ptr = new std::vector<float>(
std::move(self.get_float_by_name_with_rv(model_idx, name)));
auto capsule = py::capsule(ptr, [](void *p) {
delete reinterpret_cast<std::vector<float> *>(p);
});
return py::array(ptr->size(), ptr->data(), capsule);
})
.def("get_shape",
[](PredictorRes &self, int model_idx, std::string &name) {
return self.get_shape(model_idx, name);
......
......@@ -13,10 +13,10 @@ import paddlehub as hub
model_name = "bert_chinese_L-12_H-768_A-12"
module = hub.Module(model_name)
inputs, outputs, program = module.context(trainable=True, max_seq_len=20)
feed_keys = ["input_ids", "position_ids", "segment_ids", "input_mask", "pooled_output", "sequence_output"]
feed_keys = ["input_ids", "position_ids", "segment_ids", "input_mask"]
fetch_keys = ["pooled_output", "sequence_output"]
feed_dict = dict(zip(feed_keys, [inputs[x] for x in feed_keys]))
fetch_dict = dict(zip(fetch_keys, [outputs[x]] for x in fetch_keys))
fetch_dict = dict(zip(fetch_keys, [outputs[x] for x in fetch_keys]))
import paddle_serving_client.io as serving_io
serving_io.save_model("bert_seq20_model", "bert_seq20_client", feed_dict, fetch_dict, program)
......
......@@ -10,8 +10,9 @@ serving_io.save_model("imdb_model", "imdb_client_conf",
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
`imdb_model` is the server side model with serving configurations. `imdb_client_conf` is the client rpc configurations. Serving has a
dictionary for `Feed` and `Fetch` variables for client to assign. In the example, `{"words": data}` is the feed dict that specify the input of saved inference model. `{"prediction": prediction}` is the fetch dic that specify the output of saved inference model. An alias name can be defined for feed and fetch variables. An example of how to use alias name
`imdb_model` is the server side model with serving configurations. `imdb_client_conf` is the client rpc configurations.
Serving has a dictionary for `Feed` and `Fetch` variables for client to assign. In the example, `{"words": data}` is the feed dict that specify the input of saved inference model. `{"prediction": prediction}` is the fetch dic that specify the output of saved inference model. An alias name can be defined for feed and fetch variables. An example of how to use alias name
is as follows:
``` python
from paddle_serving_client import Client
......@@ -35,10 +36,14 @@ for line in sys.stdin:
If you have saved model files using Paddle's `save_inference_model` API, you can use Paddle Serving's` inference_model_to_serving` API to convert it into a model file that can be used for Paddle Serving.
```
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, model_filename=None, params_filename=None, serving_server="serving_server", serving_client="serving_client")
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None )
```
dirname (str) - Path of saved model files. Program file and parameter files are saved in this directory.
model_filename (str, optional) - The name of file to load the inference program. If it is None, the default filename __model__ will be used. Default: None.
paras_filename (str, optional) - The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. Default: None.
serving_server (str, optional) - The path of model files and configuration files for server. Default: "serving_server".
serving_client (str, optional) - The path of configuration files for client. Default: "serving_client".
model_filename (str, optional) - The name of file to load the inference program. If it is None, the default filename `__model__` will be used. Default: None.
paras_filename (str, optional) - The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. Default: None.
......@@ -11,7 +11,9 @@ serving_io.save_model("imdb_model", "imdb_client_conf",
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
imdb_model是具有服务配置的服务器端模型。 imdb_client_conf是客户端rpc配置。 Serving有一个 提供给用户存放Feed和Fetch变量信息的字典。 在示例中,`{words”:data}` 是用于指定已保存推理模型输入的提要字典。`{"prediction":projection}`是指定保存的推理模型输出的字典。可以为feed和fetch变量定义一个别名。 如何使用别名的例子 示例如下:
imdb_model是具有服务配置的服务器端模型。 imdb_client_conf是客户端rpc配置。
Serving有一个提供给用户存放Feed和Fetch变量信息的字典。 在示例中,`{"words":data}` 是用于指定已保存推理模型输入的提要字典。`{"prediction":projection}`是指定保存的推理模型输出的字典。可以为feed和fetch变量定义一个别名。 如何使用别名的例子 示例如下:
``` python
from paddle_serving_client import Client
......@@ -35,10 +37,14 @@ for line in sys.stdin:
如果已使用Paddle 的`save_inference_model`接口保存出预测要使用的模型,则可以通过Paddle Serving的`inference_model_to_serving`接口转换成可用于Paddle Serving的模型文件。
```
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, model_filename=None, params_filename=None, serving_server="serving_server", serving_client="serving_client")
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None)
```
dirname (str) – 需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。
model_filename (str,可选) – 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 __model__ 作为默认的文件名。默认值为None。
serving_server (str, 可选) - 转换后的模型文件和配置文件的存储路径。默认值为serving_server。
serving_client (str, 可选) - 转换后的客户端配置文件存储路径。默认值为serving_client。
model_filename (str,可选) – 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 `__model__` 作为默认的文件名。默认值为None。
params_filename (str,可选) – 存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保存在一个单独的二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None。默认值为None。
serving_server (str, 可选) - 转换后的模型文件和配置文件的存储路径。默认值为"serving_server"。
serving_client (str, 可选) - 转换后的客户端配置文件存储路径。默认值为"serving_client"。
# 使用uwsgi启动HTTP预测服务
# Deploy HTTP service with uWSGI
在提供的fit_a_line示例中,启动HTTP预测服务后会看到有以下信息:
([简体中文](./UWSGI_DEPLOY_CN.md)|English)
In fit_a_line example, after starting the HTTP prediction service, you will see the following information:
```shell
web service address:
......@@ -13,46 +15,31 @@ http://10.127.3.150:9393/uci/prediction
* Running on http://0.0.0.0:9393/ (Press CTRL+C to quit)
```
这里会提示启动的HTTP服务是开发模式,并不能用于生产环境的部署。Flask启动的服务环境不够稳定也无法承受大量请求的并发,实际部署过程中配合需要WSGI(Web Server Gateway Interface)使用。
Here you will be prompted that the HTTP service started is in development mode and cannot be used for production deployment.
The prediction service started by Flask is not stable enough to withstand the concurrency of a large number of requests. In the actual deployment process, WSGI (Web Server Gateway Interface) is used.
下面我们展示一下如何使用[uWSGI](https://github.com/unbit/uwsgi)模块来部署HTTP预测服务用于生产环境。
Next, we will show how to use the [uWSGI] (https://github.com/unbit/uwsgi) module to deploy HTTP prediction services for production environments.
编写HTTP服务脚本
```python
#uwsgi_service.py
from paddle_serving_server.web_service import WebService
from flask import Flask, request
#配置预测服务
#Define prediction service
uci_service = WebService(name = "uci")
uci_service.load_model_config("./uci_housing_model")
uci_service.prepare_server(workdir="./workdir", port=int(9500), device="cpu")
uci_service.run_server()
#配置flask服务
app_instance = Flask(__name__)
@app_instance.before_first_request
def init():
global uci_service
uci_service._launch_web_service()
service_name = "/" + uci_service.name + "/prediction"
@app_instance.route(service_name, methods=["POST"])
def run():
return uci_service.get_prediction(request)
#run方法用于直接调试中直接启动服务
if __name__ == "__main__":
app_instance.run()
#Get flask application
app_instance = uci_service.get_app_instance()
```
使用uwsgi启动HTTP服务
Start service with uWSGI
```bash
uwsgi --http :9000 --wsgi-file uwsgi_service.py --callable app_instance --processes 4
uwsgi --http :9393 --module uwsgi_service:app_instance
```
使用--processes参数可以指定服务的进程数,请注意目前Serving HTTP 服务暂时不支持多线程的方式使用。
Use the --processes parameter to specify the number of service processes.
更多uWSGI的信息请参考[uWSGI使用文档](https://uwsgi-docs.readthedocs.io/en/latest/)
For more information about uWSGI, please refer to [uWSGI documentation](https://uwsgi-docs.readthedocs.io/en/latest/)
# 使用uwsgi启动HTTP预测服务
(简体中文|[English](./UWSGI_DEPLOY.md))
在提供的fit_a_line示例中,启动HTTP预测服务后会看到有以下信息:
```shell
web service address:
http://10.127.3.150:9393/uci/prediction
* Serving Flask app "serve" (lazy loading)
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://0.0.0.0:9393/ (Press CTRL+C to quit)
```
这里会提示启动的HTTP服务是开发模式,并不能用于生产环境的部署。Flask启动的服务环境不够稳定也无法承受大量请求的并发,实际部署过程中配合需要WSGI(Web Server Gateway Interface)使用。
下面我们展示一下如何使用[uWSGI](https://github.com/unbit/uwsgi)模块来部署HTTP预测服务用于生产环境。
编写HTTP服务脚本
```python
#uwsgi_service.py
from paddle_serving_server.web_service import WebService
#配置预测服务
uci_service = WebService(name = "uci")
uci_service.load_model_config("./uci_housing_model")
uci_service.prepare_server(workdir="./workdir", port=int(9500), device="cpu")
uci_service.run_server()
#获取flask服务
app_instance = uci_service.get_app_instance()
```
使用uwsgi启动HTTP服务
```bash
uwsgi --http :9393 --module uwsgi_service:app_instance
```
使用--processes参数可以指定服务的进程数。
更多uWSGI的信息请参考[uWSGI使用文档](https://uwsgi-docs.readthedocs.io/en/latest/)
# Cascade RCNN model on Paddle Serving
([简体中文](./README_CN.md)|English)
### Get The Cascade RCNN Model
```
sh get_data.sh
```
If you want to have more detection models, please refer to [Paddle Detection Model Zoo](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.2/docs/MODEL_ZOO_cn.md)
### Start the service
```
python -m paddle_serving_server_gpu.serve --model serving_server --port 9292 --gpu_id 0
```
### Perform prediction
```
python test_client.py
```
Image with bounding boxes and json result would be saved in `output` folder.
# 使用Paddle Serving部署Cascade RCNN模型
(简体中文|[English](./README.md))
## 获得Cascade RCNN模型
```
sh get_data.sh
```
如果你想要更多的检测模型,请参考[Paddle检测模型库](https://github.com/PaddlePaddle/PaddleDetection/blob/release/0.2/docs/MODEL_ZOO_cn.md)
### 启动服务
```
python -m paddle_serving_server_gpu.serve --model serving_server --port 9292 --gpu_id 0
```
### 执行预测
```
python test_client.py
```
客户端已经为图片做好了后处理,在`output`文件夹下存放各个框的json格式信息还有后处理结果图片。
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/pddet_demo/cascade_rcnn_r50_fpx_1x_serving.tar.gz
tar xf cascade_rcnn_r50_fpx_1x_serving.tar.gz
......@@ -15,34 +15,35 @@ sh get_model.sh
pip install paddle_serving_app
```
### HTTP Infer
### HTTP Service
launch server side
```
python image_classification_service.py ResNet50_vd_model workdir 9393 #cpu inference service
python resnet50_web_service.py ResNet50_vd_model cpu 9696 #cpu inference service
```
```
python image_classification_service_gpu.py ResNet50_vd_model workdir 9393 #gpu inference service
python resnet50_web_service.py ResNet50_vd_model gpu 9696 #gpu inference service
```
client send inference request
```
python image_http_client.py
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9696/image/prediction
```
### RPC Infer
### RPC Service
launch server side
```
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9393 #cpu inference service
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu inference service
```
```
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 #gpu inference service
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu inference service
```
client send inference request
```
python image_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
*the port of server side in this example is 9393, the sample data used by client side is in the folder ./data. These parameter can be modified in practice*
*the port of server side in this example is 9696
......@@ -15,34 +15,35 @@ sh get_model.sh
pip install paddle_serving_app
```
### 执行HTTP预测服务
### HTTP服务
启动server端
```
python image_classification_service.py ResNet50_vd_model workdir 9393 #cpu预测服务
python image_classification_service.py ResNet50_vd_model cpu 9696 #cpu预测服务
```
```
python image_classification_service_gpu.py ResNet50_vd_model workdir 9393 #gpu预测服务
python image_classification_service.py ResNet50_vd_model gpu 9696 #gpu预测服务
```
client端进行预测
发送HTTP POST请求
```
python image_http_client.py
curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"image": "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"}], "fetch": ["score"]}' http://127.0.0.1:9696/image/prediction
```
### 执行RPC预测服务
### RPC服务
启动server端
```
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9393 #cpu预测服务
python -m paddle_serving_server.serve --model ResNet50_vd_model --port 9696 #cpu预测服务
```
```
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9393 --gpu_ids 0 #gpu预测服务
python -m paddle_serving_server_gpu.serve --model ResNet50_vd_model --port 9696 --gpu_ids 0 #gpu预测服务
```
client端进行预测
```
python image_rpc_client.py ResNet50_vd_client_config/serving_client_conf.prototxt
```
*server端示例中服务端口为9393端口,client端示例中数据来自./data文件夹,server端地址为本地9393端口,可根据实际情况更改脚本。*
*server端示例中服务端口为9696端口
......@@ -39,8 +39,8 @@ def single_func(idx, resource):
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(1000):
img = reader.process_image(img_list[i]).reshape(-1)
for i in range(100):
img = reader.process_image(img_list[i])
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
end = time.time()
return [[end - start]]
......@@ -49,7 +49,7 @@ def single_func(idx, resource):
if __name__ == "__main__":
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
endpoint_list = ["127.0.0.1:9292"]
#card_num = 4
#for i in range(args.thread):
# endpoint_list.append("127.0.0.1:{}".format(9295 + i % card_num))
......
......@@ -24,6 +24,7 @@ from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import requests
import json
import base64
from image_reader import ImageReader
args = benchmark_args()
......@@ -36,6 +37,10 @@ def single_func(idx, resource):
img_list = []
for i in range(1000):
img_list.append(open("./image_data/n01440764/" + file_list[i]).read())
profile_flags = False
if "FLAGS_profile_client" in os.environ and os.environ[
"FLAGS_profile_client"]:
profile_flags = True
if args.request == "rpc":
reader = ImageReader()
fetch = ["score"]
......@@ -46,23 +51,43 @@ def single_func(idx, resource):
for i in range(1000):
if args.batch_size >= 1:
feed_batch = []
i_start = time.time()
for bi in range(args.batch_size):
img = reader.process_image(img_list[i])
img = img.reshape(-1)
feed_batch.append({"image": img})
i_end = time.time()
if profile_flags:
print("PROFILE\tpid:{}\timage_pre_0:{} image_pre_1:{}".
format(os.getpid(),
int(round(i_start * 1000000)),
int(round(i_end * 1000000))))
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("no batch predict for http")
py_version = 2
server = "http://" + resource["endpoint"][idx % len(resource[
"endpoint"])] + "/image/prediction"
start = time.time()
for i in range(1000):
if py_version == 2:
image = base64.b64encode(
open("./image_data/n01440764/" + file_list[i]).read())
else:
image = base64.b64encode(open(image_path, "rb").read()).decode(
"utf-8")
req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
end = time.time()
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
endpoint_list = ["127.0.0.1:9292"]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import cv2
import base64
import numpy as np
from paddle_serving_app import ImageReader
from paddle_serving_server_gpu.web_service import WebService
class ImageService(WebService):
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
feed_batch = []
for ins in feed:
if "image" not in ins:
raise ("feed data error!")
sample = base64.b64decode(ins["image"])
img = reader.process_image(sample)
feed_batch.append({"image": img})
return feed_batch, fetch
image_service = ImageService(name="image")
image_service.load_model_config(sys.argv[1])
image_service.set_gpus("0,1")
image_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="gpu")
image_service.run_server()
image_service.run_flask()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import requests
import base64
import json
import time
import os
import sys
py_version = sys.version_info[0]
def predict(image_path, server):
if py_version == 2:
image = base64.b64encode(open(image_path).read())
else:
image = base64.b64encode(open(image_path, "rb").read()).decode("utf-8")
req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
try:
print(r.json()["result"]["score"])
except ValueError:
print(r.text)
return r
if __name__ == "__main__":
server = "http://127.0.0.1:9393/image/prediction"
image_list = os.listdir("./image_data/n01440764/")
start = time.time()
for img in image_list:
image_file = "./image_data/n01440764/" + img
res = predict(image_file, server)
end = time.time()
print(end - start)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
class ImageReader():
def __init__(self):
self.image_mean = [0.485, 0.456, 0.406]
self.image_std = [0.229, 0.224, 0.225]
self.image_shape = [3, 224, 224]
self.resize_short_size = 256
self.interpolation = None
def resize_short(self, img, target_size, interpolation=None):
"""resize image
Args:
img: image data
target_size: resize short target size
interpolation: interpolation mode
Returns:
resized image data
"""
percent = float(target_size) / min(img.shape[0], img.shape[1])
resized_width = int(round(img.shape[1] * percent))
resized_height = int(round(img.shape[0] * percent))
if interpolation:
resized = cv2.resize(
img, (resized_width, resized_height),
interpolation=interpolation)
else:
resized = cv2.resize(img, (resized_width, resized_height))
return resized
def crop_image(self, img, target_size, center):
"""crop image
Args:
img: images data
target_size: crop target size
center: crop mode
Returns:
img: cropped image data
"""
height, width = img.shape[:2]
size = target_size
if center == True:
w_start = (width - size) // 2
h_start = (height - size) // 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img[h_start:h_end, w_start:w_end, :]
return img
def process_image(self, sample):
""" process_image """
mean = self.image_mean
std = self.image_std
crop_size = self.image_shape[1]
data = np.fromstring(sample, np.uint8)
img = cv2.imdecode(data, cv2.IMREAD_COLOR)
if img is None:
print("img is None, pass it.")
return None
if crop_size > 0:
target_size = self.resize_short_size
img = self.resize_short(
img, target_size, interpolation=self.interpolation)
img = self.crop_image(img, target_size=crop_size, center=True)
img = img[:, :, ::-1]
img = img.astype('float32').transpose((2, 0, 1)) / 255
img_mean = np.array(mean).reshape((3, 1, 1))
img_std = np.array(std).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img
此差异已折叠。
......@@ -14,23 +14,35 @@
import sys
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize
from paddle_serving_app.reader import Sequential, URL2Image, Resize
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
import time
client = Client()
client.load_client_config(sys.argv[1])
client.connect(["127.0.0.1:9393"])
client.connect(["127.0.0.1:9696"])
label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
label_dict[label_idx] = line.strip()
label_idx += 1
seq = Sequential([
File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])
print(seq)
start = time.time()
image_file = "daisy.jpg"
for i in range(1000):
image_file = "https://paddle-serving.bj.bcebos.com/imagenet-example/daisy.jpg"
for i in range(10):
img = seq(image_file)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
prob = max(fetch_map["score"][0])
label = label_dict[fetch_map["score"][0].tolist().index(prob)].strip(
).replace(",", "")
print("prediction: {}, probability: {}".format(label, prob))
end = time.time()
print(end - start)
......@@ -11,31 +11,62 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle_serving_server.web_service import WebService
import sys
import cv2
import base64
import numpy as np
from paddle_serving_app import ImageReader
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize
if len(sys.argv) != 4:
print("python resnet50_web_service.py model device port")
sys.exit(-1)
device = sys.argv[2]
if device == "cpu":
from paddle_serving_server.web_service import WebService
else:
from paddle_serving_server_gpu.web_service import WebService
class ImageService(WebService):
def preprocess(self, feed={}, fetch=[]):
reader = ImageReader()
def init_imagenet_setting(self):
self.seq = Sequential([
URL2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose(
(2, 0, 1)), Div(255), Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225], True)
])
self.label_dict = {}
label_idx = 0
with open("imagenet.label") as fin:
for line in fin:
self.label_dict[label_idx] = line.strip()
label_idx += 1
def preprocess(self, feed=[], fetch=[]):
feed_batch = []
for ins in feed:
if "image" not in ins:
raise ("feed data error!")
sample = base64.b64decode(ins["image"])
img = reader.process_image(sample)
img = self.seq(ins["image"])
feed_batch.append({"image": img})
return feed_batch, fetch
def postprocess(self, feed=[], fetch=[], fetch_map={}):
score_list = fetch_map["score"]
result = {"label": [], "prob": []}
for score in score_list:
max_score = max(score)
result["label"].append(self.label_dict[score.index(max_score)]
.strip().replace(",", ""))
result["prob"].append(max_score)
return result
image_service = ImageService(name="image")
image_service.load_model_config(sys.argv[1])
image_service.init_imagenet_setting()
if device == "gpu":
image_service.set_gpus("0,1")
image_service.prepare_server(
workdir=sys.argv[2], port=int(sys.argv[3]), device="cpu")
workdir="workdir", port=int(sys.argv[3]), device=device)
image_service.run_server()
image_service.run_flask()
......@@ -16,7 +16,7 @@
import sys
import time
import requests
from imdb_reader import IMDBDataset
from paddle_serving_app import IMDBDataset
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
......@@ -37,26 +37,39 @@ def single_func(idx, resource):
client.load_client_config(args.model)
client.connect([args.endpoint])
for i in range(1000):
if args.batch_size == 1:
word_ids, label = imdb_dataset.get_words_and_label(line)
fetch_map = client.predict(
feed={"words": word_ids}, fetch=["prediction"])
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
word_ids, label = imdb_dataset.get_words_and_label(dataset[
bi])
feed_batch.append({"words": word_ids})
result = client.predict(feed=feed_batch, fetch=["prediction"])
if result is None:
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
for fn in filelist:
fin = open(fn)
for line in fin:
word_ids, label = imdb_dataset.get_words_and_label(line)
r = requests.post(
"http://{}/imdb/prediction".format(args.endpoint),
data={"words": word_ids,
"fetch": ["prediction"]})
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
feed_batch.append({"words": dataset[bi]})
r = requests.post(
"http://{}/imdb/prediction".format(args.endpoint),
json={"feed": feed_batch,
"fetch": ["prediction"]})
if r.status_code != 200:
print('HTTP status code -ne 200')
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
end = time.time()
return [[end - start]]
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)
avg_cost = 0
for cost in result[0]:
avg_cost += cost
print("total cost {} s of each thread".format(avg_cost / args.thread))
rm profile_log
for thread_num in 1 2 4 8 16
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --model imdbo_bow_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
done
done
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import time
import requests
from imdb_reader import IMDBDataset
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
args = benchmark_args()
def single_func(idx, resource):
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource("./imdb.vocab")
dataset = []
with open("./test_data/part-0") as fin:
for line in fin:
dataset.append(line.strip())
start = time.time()
if args.request == "rpc":
client = Client()
client.load_client_config(args.model)
client.connect([args.endpoint])
for i in range(1000):
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
word_ids, label = imdb_dataset.get_words_and_label(dataset[
bi])
feed_batch.append({"words": word_ids})
result = client.predict(feed=feed_batch, fetch=["prediction"])
if result is None:
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
feed_batch.append({"words": dataset[bi]})
r = requests.post(
"http://{}/imdb/prediction".format(args.endpoint),
json={"feed": feed_batch,
"fetch": ["prediction"]})
if r.status_code != 200:
print('HTTP status code -ne 200')
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
end = time.time()
return [[end - start]]
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
avg_cost = 0
for cost in result[0]:
avg_cost += cost
print("total cost {} s of each thread".format(avg_cost / args.thread))
rm profile_log
for thread_num in 1 2 4 8 16
do
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark_batch.py --thread $thread_num --batch_size $batch_size --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
done
done
......@@ -13,7 +13,7 @@
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
from imdb_reader import IMDBDataset
from paddle_serving_app import IMDBDataset
import sys
client = Client()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
import sys
import subprocess
from multiprocessing import Pool
import time
def batch_predict(batch_size=4):
client = Client()
client.load_client_config(conf_file)
client.connect(["127.0.0.1:9292"])
fetch = ["acc", "cost", "prediction"]
feed_batch = []
for line in sys.stdin:
group = line.strip().split()
words = [int(x) for x in group[1:int(group[0])]]
label = [int(group[-1])]
feed = {"words": words, "label": label}
feed_batch.append(feed)
if len(feed_batch) == batch_size:
fetch_batch = client.batch_predict(
feed_batch=feed_batch, fetch=fetch)
for i in range(batch_size):
print("{} {}".format(fetch_batch[i]["prediction"][1],
feed_batch[i]["label"][0]))
feed_batch = []
if len(feed_batch) > 0:
fetch_batch = client.batch_predict(feed_batch=feed_batch, fetch=fetch)
for i in range(len(feed_batch)):
print("{} {}".format(fetch_batch[i]["prediction"][1], feed_batch[i][
"label"][0]))
if __name__ == '__main__':
conf_file = sys.argv[1]
batch_size = int(sys.argv[2])
batch_predict(batch_size)
......@@ -14,7 +14,7 @@
# pylint: disable=doc-string-missing
from paddle_serving_server.web_service import WebService
from imdb_reader import IMDBDataset
from paddle_serving_app import IMDBDataset
import sys
......
......@@ -51,13 +51,11 @@ class SentaService(WebService):
def init_lac_service(self):
ps = Process(target=self.start_lac_service())
ps.start()
#self.init_lac_client()
self.init_lac_client()
def lac_predict(self, feed_data):
self.init_lac_client()
lac_result = self.lac_client.predict(
feed={"words": feed_data}, fetch=["crf_decode"])
self.lac_client.release()
return lac_result
def init_lac_client(self):
......
......@@ -12,8 +12,9 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .reader.chinese_bert_reader import ChineseBertReader
from .reader.image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize
from .reader.image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize, PadStride
from .reader.lac_reader import LACReader
from .reader.senta_reader import SentaReader
from .reader.imdb_reader import IMDBDataset
from .models import ServingModels
from .local_predict import Debugger
......@@ -11,4 +11,4 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize, Transpose, Div, RGB2BGR, BGR2RGB, RCNNPostprocess, SegPostprocess
from .image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize, Transpose, Div, RGB2BGR, BGR2RGB, RCNNPostprocess, SegPostprocess, PadStride
......@@ -465,6 +465,24 @@ class Resize(object):
_cv2_interpolation_to_str[self.interpolation])
class PadStride(object):
def __init__(self, stride):
self.coarsest_stride = stride
def __call__(self, img):
coarsest_stride = self.coarsest_stride
if coarsest_stride == 0:
return img
im_c, im_h, im_w = img.shape
pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = img
im_info = {}
im_info['resize_shape'] = padding_im.shape[1:]
return padding_im
class Transpose(object):
def __init__(self, transpose_target):
self.transpose_target = transpose_target
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import os
import paddle
import re
import paddle.fluid.incubate.data_generator as dg
py_version = sys.version_info[0]
class IMDBDataset(dg.MultiSlotDataGenerator):
def load_resource(self, dictfile):
self._vocab = {}
wid = 0
if py_version == 2:
with open(dictfile) as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
else:
with open(dictfile, encoding="utf-8") as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
self._unk_id = len(self._vocab)
self._pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
self.return_value = ("words", [1, 2, 3, 4, 5, 6]), ("label", [0])
def get_words_only(self, line):
sent = line.lower().replace("<br />", " ").strip()
words = [x for x in self._pattern.split(sent) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas
def get_words_and_label(self, line):
send = '|'.join(line.split('|')[:-1]).lower().replace("<br />",
" ").strip()
label = [int(line.split('|')[-1])]
words = [x for x in self._pattern.split(send) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas, label
def infer_reader(self, infer_filelist, batch, buf_size):
def local_iter():
for fname in infer_filelist:
with open(fname, "r") as fin:
for line in fin:
feas, label = self.get_words_and_label(line)
yield feas, label
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def memory_iter():
for i in range(1000):
yield self.return_value
def data_iter():
feas, label = self.get_words_and_label(line)
yield ("words", feas), ("label", label)
return data_iter
if __name__ == "__main__":
imdb = IMDBDataset()
imdb.load_resource("imdb.vocab")
imdb.run_from_stdin()
......@@ -329,9 +329,9 @@ class Client(object):
# result map needs to be a numpy array
for i, name in enumerate(fetch_names):
if self.fetch_names_to_type_[name] == int_type:
# result_map[name] will be py::array(numpy array)
result_map[name] = result_batch.get_int64_by_name(mi, name)
shape = result_batch.get_shape(mi, name)
result_map[name] = np.array(result_map[name], dtype='int64')
result_map[name].shape = shape
if name in self.lod_tensor_set:
result_map["{}.lod".format(name)] = np.array(
......@@ -339,8 +339,6 @@ class Client(object):
elif self.fetch_names_to_type_[name] == float_type:
result_map[name] = result_batch.get_float_by_name(mi, name)
shape = result_batch.get_shape(mi, name)
result_map[name] = np.array(
result_map[name], dtype='float32')
result_map[name].shape = shape
if name in self.lod_tensor_set:
result_map["{}.lod".format(name)] = np.array(
......
......@@ -104,10 +104,10 @@ def save_model(server_model_folder,
def inference_model_to_serving(dirname,
model_filename=None,
params_filename=None,
serving_server="serving_server",
serving_client="serving_client"):
serving_client="serving_client",
model_filename=None,
params_filename=None):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
inference_program, feed_target_names, fetch_targets = \
......
......@@ -274,7 +274,8 @@ class Server(object):
self.model_config_paths[node.name] = path
print("You have specified multiple model paths, please ensure "
"that the input and output of multiple models are the same.")
workflow_oi_config_path = self.model_config_paths.items()[0][1]
workflow_oi_config_path = list(self.model_config_paths.items())[0][
1]
else:
raise Exception("The type of model_config_paths must be str or "
"dict({op: model_path}), not {}.".format(
......
......@@ -101,7 +101,6 @@ class WebService(object):
p_rpc = Process(target=self._launch_rpc_service)
p_rpc.start()
def run_flask(self):
app_instance = Flask(__name__)
@app_instance.before_first_request
......@@ -114,10 +113,16 @@ class WebService(object):
def run():
return self.get_prediction(request)
app_instance.run(host="0.0.0.0",
port=self.port,
threaded=False,
processes=4)
self.app_instance = app_instance
def run_flask(self):
self.app_instance.run(host="0.0.0.0",
port=self.port,
threaded=False,
processes=1)
def get_app_instance(self):
return self.app_instance
def preprocess(self, feed=[], fetch=[]):
return feed, fetch
......
......@@ -320,7 +320,8 @@ class Server(object):
self.model_config_paths[node.name] = path
print("You have specified multiple model paths, please ensure "
"that the input and output of multiple models are the same.")
workflow_oi_config_path = self.model_config_paths.items()[0][1]
workflow_oi_config_path = list(self.model_config_paths.items())[0][
1]
else:
raise Exception("The type of model_config_paths must be str or "
"dict({op: model_path}), not {}.".format(
......
......@@ -151,7 +151,6 @@ class WebService(object):
for p in server_pros:
p.start()
def run_flask(self):
app_instance = Flask(__name__)
@app_instance.before_first_request
......@@ -164,10 +163,16 @@ class WebService(object):
def run():
return self.get_prediction(request)
app_instance.run(host="0.0.0.0",
port=self.port,
threaded=False,
processes=4)
self.app_instance = app_instance
def run_flask(self):
self.app_instance.run(host="0.0.0.0",
port=self.port,
threaded=False,
processes=1)
def get_app_instance(self):
return app_instance
def preprocess(self, feed=[], fetch=[]):
return feed, fetch
......
......@@ -43,5 +43,5 @@ RUN yum -y install wget && \
source /root/.bashrc && \
cd .. && rm -rf Python-3.6.8* && \
pip3 install google protobuf setuptools wheel flask numpy==1.16.4 && \
yum -y install epel-release && yum -y install patchelf && \
yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \
yum clean all
......@@ -43,5 +43,5 @@ RUN yum -y install wget && \
source /root/.bashrc && \
cd .. && rm -rf Python-3.6.8* && \
pip3 install google protobuf setuptools wheel flask numpy==1.16.4 && \
yum -y install epel-release && yum -y install patchelf && \
yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \
yum clean all
......@@ -20,5 +20,5 @@ RUN yum -y install wget >/dev/null \
&& rm get-pip.py \
&& yum install -y python3 python3-devel \
&& pip3 install google protobuf setuptools wheel flask \
&& yum -y install epel-release && yum -y install patchelf \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\
&& yum clean all
......@@ -21,5 +21,5 @@ RUN yum -y install wget >/dev/null \
&& rm get-pip.py \
&& yum install -y python3 python3-devel \
&& pip3 install google protobuf setuptools wheel flask \
&& yum -y install epel-release && yum -y install patchelf \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\
&& yum clean all
......@@ -343,7 +343,7 @@ function python_test_imdb() {
sleep 5
check_cmd "head test_data/part-0 | python test_client.py imdb_cnn_client_conf/serving_client_conf.prototxt imdb.vocab"
# test batch predict
check_cmd "python benchmark_batch.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc --endpoint 127.0.0.1:9292"
check_cmd "python benchmark.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc --endpoint 127.0.0.1:9292"
echo "imdb CPU RPC inference pass"
kill_server_process
rm -rf work_dir1
......@@ -359,7 +359,7 @@ function python_test_imdb() {
exit 1
fi
# test batch predict
check_cmd "python benchmark_batch.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request http --endpoint 127.0.0.1:9292"
check_cmd "python benchmark.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request http --endpoint 127.0.0.1:9292"
setproxy # recover proxy state
kill_server_process
ps -ef | grep "text_classify_service.py" | grep -v grep | awk '{print $2}' | xargs kill
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册