提交 dc88c4d4 编写于 作者: M MRXLT 提交者: GitHub

Merge pull request #556 from MRXLT/0.2.2-doc-fix

0.2.2 doc fix
......@@ -264,8 +264,8 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"url": "https://pa
### About Efficiency
- [How to profile Paddle Serving latency?](python/examples/util)
- [How to optimize performance?(Chinese)](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [Deploy multi-services on one GPU(Chinese)](doc/PERFORMANCE_OPTIM_CN.md)
- [How to optimize performance?(Chinese)](doc/PERFORMANCE_OPTIM_CN.md)
- [Deploy multi-services on one GPU(Chinese)](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [CPU Benchmarks(Chinese)](doc/BENCHMARKING.md)
- [GPU Benchmarks(Chinese)](doc/GPU_BENCHMARKING.md)
......
......@@ -270,8 +270,8 @@ curl -H "Content-Type:application/json" -X POST -d '{"feed":[{"url": "https://pa
### 关于Paddle Serving性能
- [如何测试Paddle Serving性能?](python/examples/util/)
- [如何优化性能?](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [在一张GPU上启动多个预测服务](doc/PERFORMANCE_OPTIM_CN.md)
- [如何优化性能?](doc/PERFORMANCE_OPTIM_CN.md)
- [在一张GPU上启动多个预测服务](doc/MULTI_SERVICE_ON_ONE_GPU_CN.md)
- [CPU版Benchmarks](doc/BENCHMARKING.md)
- [GPU版Benchmarks](doc/GPU_BENCHMARKING.md)
......
......@@ -13,10 +13,10 @@ import paddlehub as hub
model_name = "bert_chinese_L-12_H-768_A-12"
module = hub.Module(model_name)
inputs, outputs, program = module.context(trainable=True, max_seq_len=20)
feed_keys = ["input_ids", "position_ids", "segment_ids", "input_mask", "pooled_output", "sequence_output"]
feed_keys = ["input_ids", "position_ids", "segment_ids", "input_mask"]
fetch_keys = ["pooled_output", "sequence_output"]
feed_dict = dict(zip(feed_keys, [inputs[x] for x in feed_keys]))
fetch_dict = dict(zip(fetch_keys, [outputs[x]] for x in fetch_keys))
fetch_dict = dict(zip(fetch_keys, [outputs[x] for x in fetch_keys]))
import paddle_serving_client.io as serving_io
serving_io.save_model("bert_seq20_model", "bert_seq20_client", feed_dict, fetch_dict, program)
......
......@@ -10,8 +10,9 @@ serving_io.save_model("imdb_model", "imdb_client_conf",
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
`imdb_model` is the server side model with serving configurations. `imdb_client_conf` is the client rpc configurations. Serving has a
dictionary for `Feed` and `Fetch` variables for client to assign. In the example, `{"words": data}` is the feed dict that specify the input of saved inference model. `{"prediction": prediction}` is the fetch dic that specify the output of saved inference model. An alias name can be defined for feed and fetch variables. An example of how to use alias name
`imdb_model` is the server side model with serving configurations. `imdb_client_conf` is the client rpc configurations.
Serving has a dictionary for `Feed` and `Fetch` variables for client to assign. In the example, `{"words": data}` is the feed dict that specify the input of saved inference model. `{"prediction": prediction}` is the fetch dic that specify the output of saved inference model. An alias name can be defined for feed and fetch variables. An example of how to use alias name
is as follows:
``` python
from paddle_serving_client import Client
......@@ -35,10 +36,14 @@ for line in sys.stdin:
If you have saved model files using Paddle's `save_inference_model` API, you can use Paddle Serving's` inference_model_to_serving` API to convert it into a model file that can be used for Paddle Serving.
```
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, model_filename=None, params_filename=None, serving_server="serving_server", serving_client="serving_client")
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None )
```
dirname (str) - Path of saved model files. Program file and parameter files are saved in this directory.
model_filename (str, optional) - The name of file to load the inference program. If it is None, the default filename __model__ will be used. Default: None.
paras_filename (str, optional) - The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. Default: None.
serving_server (str, optional) - The path of model files and configuration files for server. Default: "serving_server".
serving_client (str, optional) - The path of configuration files for client. Default: "serving_client".
model_filename (str, optional) - The name of file to load the inference program. If it is None, the default filename `__model__` will be used. Default: None.
paras_filename (str, optional) - The name of file to load all parameters. It is only used for the case that all parameters were saved in a single binary file. If parameters were saved in separate files, set it as None. Default: None.
......@@ -11,7 +11,9 @@ serving_io.save_model("imdb_model", "imdb_client_conf",
{"words": data}, {"prediction": prediction},
fluid.default_main_program())
```
imdb_model是具有服务配置的服务器端模型。 imdb_client_conf是客户端rpc配置。 Serving有一个 提供给用户存放Feed和Fetch变量信息的字典。 在示例中,`{words”:data}` 是用于指定已保存推理模型输入的提要字典。`{"prediction":projection}`是指定保存的推理模型输出的字典。可以为feed和fetch变量定义一个别名。 如何使用别名的例子 示例如下:
imdb_model是具有服务配置的服务器端模型。 imdb_client_conf是客户端rpc配置。
Serving有一个提供给用户存放Feed和Fetch变量信息的字典。 在示例中,`{"words":data}` 是用于指定已保存推理模型输入的提要字典。`{"prediction":projection}`是指定保存的推理模型输出的字典。可以为feed和fetch变量定义一个别名。 如何使用别名的例子 示例如下:
``` python
from paddle_serving_client import Client
......@@ -35,10 +37,14 @@ for line in sys.stdin:
如果已使用Paddle 的`save_inference_model`接口保存出预测要使用的模型,则可以通过Paddle Serving的`inference_model_to_serving`接口转换成可用于Paddle Serving的模型文件。
```
import paddle_serving_client.io as serving_io
serving_io.inference_model_to_serving(dirname, model_filename=None, params_filename=None, serving_server="serving_server", serving_client="serving_client")
serving_io.inference_model_to_serving(dirname, serving_server="serving_server", serving_client="serving_client", model_filename=None, params_filename=None)
```
dirname (str) – 需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。
model_filename (str,可选) – 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 __model__ 作为默认的文件名。默认值为None。
serving_server (str, 可选) - 转换后的模型文件和配置文件的存储路径。默认值为serving_server。
serving_client (str, 可选) - 转换后的客户端配置文件存储路径。默认值为serving_client。
model_filename (str,可选) – 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 `__model__` 作为默认的文件名。默认值为None。
params_filename (str,可选) – 存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保存在一个单独的二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None。默认值为None。
serving_server (str, 可选) - 转换后的模型文件和配置文件的存储路径。默认值为"serving_server"。
serving_client (str, 可选) - 转换后的客户端配置文件存储路径。默认值为"serving_client"。
......@@ -39,8 +39,8 @@ def single_func(idx, resource):
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(1000):
img = reader.process_image(img_list[i]).reshape(-1)
for i in range(100):
img = reader.process_image(img_list[i])
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
end = time.time()
return [[end - start]]
......@@ -49,7 +49,7 @@ def single_func(idx, resource):
if __name__ == "__main__":
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
endpoint_list = ["127.0.0.1:9292"]
#card_num = 4
#for i in range(args.thread):
# endpoint_list.append("127.0.0.1:{}".format(9295 + i % card_num))
......
......@@ -24,6 +24,7 @@ from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import requests
import json
import base64
from image_reader import ImageReader
args = benchmark_args()
......@@ -36,6 +37,10 @@ def single_func(idx, resource):
img_list = []
for i in range(1000):
img_list.append(open("./image_data/n01440764/" + file_list[i]).read())
profile_flags = False
if "FLAGS_profile_client" in os.environ and os.environ[
"FLAGS_profile_client"]:
profile_flags = True
if args.request == "rpc":
reader = ImageReader()
fetch = ["score"]
......@@ -46,23 +51,43 @@ def single_func(idx, resource):
for i in range(1000):
if args.batch_size >= 1:
feed_batch = []
i_start = time.time()
for bi in range(args.batch_size):
img = reader.process_image(img_list[i])
img = img.reshape(-1)
feed_batch.append({"image": img})
i_end = time.time()
if profile_flags:
print("PROFILE\tpid:{}\timage_pre_0:{} image_pre_1:{}".
format(os.getpid(),
int(round(i_start * 1000000)),
int(round(i_end * 1000000))))
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("no batch predict for http")
py_version = 2
server = "http://" + resource["endpoint"][idx % len(resource[
"endpoint"])] + "/image/prediction"
start = time.time()
for i in range(1000):
if py_version == 2:
image = base64.b64encode(
open("./image_data/n01440764/" + file_list[i]).read())
else:
image = base64.b64encode(open(image_path, "rb").read()).decode(
"utf-8")
req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
r = requests.post(
server, data=req, headers={"Content-Type": "application/json"})
end = time.time()
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
endpoint_list = ["127.0.0.1:9292"]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
......
......@@ -16,7 +16,7 @@
import sys
import time
import requests
from imdb_reader import IMDBDataset
from paddle_serving_app import IMDBDataset
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
......@@ -37,26 +37,39 @@ def single_func(idx, resource):
client.load_client_config(args.model)
client.connect([args.endpoint])
for i in range(1000):
if args.batch_size == 1:
word_ids, label = imdb_dataset.get_words_and_label(line)
fetch_map = client.predict(
feed={"words": word_ids}, fetch=["prediction"])
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
word_ids, label = imdb_dataset.get_words_and_label(dataset[
bi])
feed_batch.append({"words": word_ids})
result = client.predict(feed=feed_batch, fetch=["prediction"])
if result is None:
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
for fn in filelist:
fin = open(fn)
for line in fin:
word_ids, label = imdb_dataset.get_words_and_label(line)
r = requests.post(
"http://{}/imdb/prediction".format(args.endpoint),
data={"words": word_ids,
"fetch": ["prediction"]})
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
feed_batch.append({"words": dataset[bi]})
r = requests.post(
"http://{}/imdb/prediction".format(args.endpoint),
json={"feed": feed_batch,
"fetch": ["prediction"]})
if r.status_code != 200:
print('HTTP status code -ne 200')
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
end = time.time()
return [[end - start]]
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
print(result)
avg_cost = 0
for cost in result[0]:
avg_cost += cost
print("total cost {} s of each thread".format(avg_cost / args.thread))
rm profile_log
for thread_num in 1 2 4 8 16
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --model imdbo_bow_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
done
done
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import time
import requests
from imdb_reader import IMDBDataset
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
args = benchmark_args()
def single_func(idx, resource):
imdb_dataset = IMDBDataset()
imdb_dataset.load_resource("./imdb.vocab")
dataset = []
with open("./test_data/part-0") as fin:
for line in fin:
dataset.append(line.strip())
start = time.time()
if args.request == "rpc":
client = Client()
client.load_client_config(args.model)
client.connect([args.endpoint])
for i in range(1000):
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
word_ids, label = imdb_dataset.get_words_and_label(dataset[
bi])
feed_batch.append({"words": word_ids})
result = client.predict(feed=feed_batch, fetch=["prediction"])
if result is None:
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
feed_batch.append({"words": dataset[bi]})
r = requests.post(
"http://{}/imdb/prediction".format(args.endpoint),
json={"feed": feed_batch,
"fetch": ["prediction"]})
if r.status_code != 200:
print('HTTP status code -ne 200')
raise ("predict failed.")
else:
print("unsupport batch size {}".format(args.batch_size))
end = time.time()
return [[end - start]]
multi_thread_runner = MultiThreadRunner()
result = multi_thread_runner.run(single_func, args.thread, {})
avg_cost = 0
for cost in result[0]:
avg_cost += cost
print("total cost {} s of each thread".format(avg_cost / args.thread))
rm profile_log
for thread_num in 1 2 4 8 16
do
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark_batch.py --thread $thread_num --batch_size $batch_size --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
done
done
......@@ -13,7 +13,7 @@
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
from imdb_reader import IMDBDataset
from paddle_serving_app import IMDBDataset
import sys
client = Client()
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from paddle_serving_client import Client
import sys
import subprocess
from multiprocessing import Pool
import time
def batch_predict(batch_size=4):
client = Client()
client.load_client_config(conf_file)
client.connect(["127.0.0.1:9292"])
fetch = ["acc", "cost", "prediction"]
feed_batch = []
for line in sys.stdin:
group = line.strip().split()
words = [int(x) for x in group[1:int(group[0])]]
label = [int(group[-1])]
feed = {"words": words, "label": label}
feed_batch.append(feed)
if len(feed_batch) == batch_size:
fetch_batch = client.batch_predict(
feed_batch=feed_batch, fetch=fetch)
for i in range(batch_size):
print("{} {}".format(fetch_batch[i]["prediction"][1],
feed_batch[i]["label"][0]))
feed_batch = []
if len(feed_batch) > 0:
fetch_batch = client.batch_predict(feed_batch=feed_batch, fetch=fetch)
for i in range(len(feed_batch)):
print("{} {}".format(fetch_batch[i]["prediction"][1], feed_batch[i][
"label"][0]))
if __name__ == '__main__':
conf_file = sys.argv[1]
batch_size = int(sys.argv[2])
batch_predict(batch_size)
......@@ -14,7 +14,7 @@
# pylint: disable=doc-string-missing
from paddle_serving_server.web_service import WebService
from imdb_reader import IMDBDataset
from paddle_serving_app import IMDBDataset
import sys
......
......@@ -15,5 +15,6 @@ from .reader.chinese_bert_reader import ChineseBertReader
from .reader.image_reader import ImageReader, File2Image, URL2Image, Sequential, Normalize, CenterCrop, Resize, PadStride
from .reader.lac_reader import LACReader
from .reader.senta_reader import SentaReader
from .reader.imdb_reader import IMDBDataset
from .models import ServingModels
from .local_predict import Debugger
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import sys
import os
import paddle
import re
import paddle.fluid.incubate.data_generator as dg
py_version = sys.version_info[0]
class IMDBDataset(dg.MultiSlotDataGenerator):
def load_resource(self, dictfile):
self._vocab = {}
wid = 0
if py_version == 2:
with open(dictfile) as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
else:
with open(dictfile, encoding="utf-8") as f:
for line in f:
self._vocab[line.strip()] = wid
wid += 1
self._unk_id = len(self._vocab)
self._pattern = re.compile(r'(;|,|\.|\?|!|\s|\(|\))')
self.return_value = ("words", [1, 2, 3, 4, 5, 6]), ("label", [0])
def get_words_only(self, line):
sent = line.lower().replace("<br />", " ").strip()
words = [x for x in self._pattern.split(sent) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas
def get_words_and_label(self, line):
send = '|'.join(line.split('|')[:-1]).lower().replace("<br />",
" ").strip()
label = [int(line.split('|')[-1])]
words = [x for x in self._pattern.split(send) if x and x != " "]
feas = [
self._vocab[x] if x in self._vocab else self._unk_id for x in words
]
return feas, label
def infer_reader(self, infer_filelist, batch, buf_size):
def local_iter():
for fname in infer_filelist:
with open(fname, "r") as fin:
for line in fin:
feas, label = self.get_words_and_label(line)
yield feas, label
import paddle
batch_iter = paddle.batch(
paddle.reader.shuffle(
local_iter, buf_size=buf_size),
batch_size=batch)
return batch_iter
def generate_sample(self, line):
def memory_iter():
for i in range(1000):
yield self.return_value
def data_iter():
feas, label = self.get_words_and_label(line)
yield ("words", feas), ("label", label)
return data_iter
if __name__ == "__main__":
imdb = IMDBDataset()
imdb.load_resource("imdb.vocab")
imdb.run_from_stdin()
......@@ -104,10 +104,10 @@ def save_model(server_model_folder,
def inference_model_to_serving(dirname,
model_filename=None,
params_filename=None,
serving_server="serving_server",
serving_client="serving_client"):
serving_client="serving_client",
model_filename=None,
params_filename=None):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
inference_program, feed_target_names, fetch_targets = \
......
......@@ -274,7 +274,8 @@ class Server(object):
self.model_config_paths[node.name] = path
print("You have specified multiple model paths, please ensure "
"that the input and output of multiple models are the same.")
workflow_oi_config_path = self.model_config_paths.items()[0][1]
workflow_oi_config_path = list(self.model_config_paths.items())[0][
1]
else:
raise Exception("The type of model_config_paths must be str or "
"dict({op: model_path}), not {}.".format(
......
......@@ -320,7 +320,8 @@ class Server(object):
self.model_config_paths[node.name] = path
print("You have specified multiple model paths, please ensure "
"that the input and output of multiple models are the same.")
workflow_oi_config_path = self.model_config_paths.items()[0][1]
workflow_oi_config_path = list(self.model_config_paths.items())[0][
1]
else:
raise Exception("The type of model_config_paths must be str or "
"dict({op: model_path}), not {}.".format(
......
......@@ -43,5 +43,5 @@ RUN yum -y install wget && \
source /root/.bashrc && \
cd .. && rm -rf Python-3.6.8* && \
pip3 install google protobuf setuptools wheel flask numpy==1.16.4 && \
yum -y install epel-release && yum -y install patchelf && \
yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \
yum clean all
......@@ -43,5 +43,5 @@ RUN yum -y install wget && \
source /root/.bashrc && \
cd .. && rm -rf Python-3.6.8* && \
pip3 install google protobuf setuptools wheel flask numpy==1.16.4 && \
yum -y install epel-release && yum -y install patchelf && \
yum -y install epel-release && yum -y install patchelf libXext libSM libXrender && \
yum clean all
......@@ -20,5 +20,5 @@ RUN yum -y install wget >/dev/null \
&& rm get-pip.py \
&& yum install -y python3 python3-devel \
&& pip3 install google protobuf setuptools wheel flask \
&& yum -y install epel-release && yum -y install patchelf \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\
&& yum clean all
......@@ -21,5 +21,5 @@ RUN yum -y install wget >/dev/null \
&& rm get-pip.py \
&& yum install -y python3 python3-devel \
&& pip3 install google protobuf setuptools wheel flask \
&& yum -y install epel-release && yum -y install patchelf \
&& yum -y install epel-release && yum -y install patchelf libXext libSM libXrender\
&& yum clean all
......@@ -343,7 +343,7 @@ function python_test_imdb() {
sleep 5
check_cmd "head test_data/part-0 | python test_client.py imdb_cnn_client_conf/serving_client_conf.prototxt imdb.vocab"
# test batch predict
check_cmd "python benchmark_batch.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc --endpoint 127.0.0.1:9292"
check_cmd "python benchmark.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request rpc --endpoint 127.0.0.1:9292"
echo "imdb CPU RPC inference pass"
kill_server_process
rm -rf work_dir1
......@@ -359,7 +359,7 @@ function python_test_imdb() {
exit 1
fi
# test batch predict
check_cmd "python benchmark_batch.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request http --endpoint 127.0.0.1:9292"
check_cmd "python benchmark.py --thread 4 --batch_size 8 --model imdb_bow_client_conf/serving_client_conf.prototxt --request http --endpoint 127.0.0.1:9292"
setproxy # recover proxy state
kill_server_process
ps -ef | grep "text_classify_service.py" | grep -v grep | awk '{print $2}' | xargs kill
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册