@@ -25,9 +25,9 @@ In order to meet the needs of users in different scenarios, Paddle Serving's pro
| Response time | throughput | development efficiency | Resource utilization | selection | Applications|
|-----|------|-----|-----|------|------|
| LOW | HIGH | LOW | HIGH |C++ Serving | High-performance,recall and ranking services of large-scale online recommendation systems|
| HIGH | HIGH | HIGH | HIGH |Python Pipeline Serving| High-throughput, high-efficiency, asynchronous mode, fitting for single operator multi-model combination scenarios|
| HIGH | LOW | HIGH| LOW |Python webservice| High-throughput,Low-traffic services or projects that require rapid iteration, model effect verification|
| Low | Highest | Low | Highest |C++ Serving | High-performance,recall and ranking services of large-scale online recommendation systems|
In order to make deployment more easily on public cloud, Paddle Serving considers to provides Operators on Kubernetes in submitting a service job.
### 6.2 Vector Indexing and Tree based Indexing
In recommendation and advertisement systems, it is commonly seen to use vector based index or tree based indexing service to do candidate retrievals. These retrieval tasks will be built-in services of Paddle Serving.
### 6.3 Service Monitoring
Paddle Serving will integrate Prometheus monitoring, which is a set of open source monitoring & alarm & time series database combination, suitable for k8s and docker monitoring systems.