提交 14cef444 编写于 作者: T TeslaZhao 提交者: bjjwwang

fix comflict when cherry-pick

上级 c665f480
......@@ -24,13 +24,14 @@
***
The goal of Paddle Serving is to provide high-performance, flexible and easy-to-use industrial-grade online inference services for machine learning developers and enterprises.Paddle Serving supports multiple protocols such as RESTful, gRPC, bRPC, and provides inference solutions under a variety of hardware and multiple operating system environments, and many famous pre-trained model examples.The core features are as follows:
The goal of Paddle Serving is to provide high-performance, flexible and easy-to-use industrial-grade online inference services for machine learning developers and enterprises.Paddle Serving supports multiple protocols such as RESTful, gRPC, bRPC, and provides inference solutions under a variety of hardware and multiple operating system environments, and many famous pre-trained model examples. The core features are as follows:
- Integrate high-performance server-side inference engine paddle Inference and mobile-side engine paddle Lite. Models of other machine learning platforms (Caffe/TensorFlow/ONNX/PyTorch) can be migrated to paddle through [x2paddle](https://github.com/PaddlePaddle/X2Paddle).
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline.The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md)
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md ) such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, etc.; Integrate acceleration libraries of Intel MKLDNN and Nvidia TensorRT, and low-precision and quantitative inference.
- There are two frameworks, namely high-performance C++ Serving and high-easy-to-use Python pipeline. The C++ Serving is based on the bRPC network framework to create a high-throughput, low-latency inference service, and its performance indicators are ahead of competing products. The Python pipeline is based on the gRPC/gRPC-Gateway network framework and the Python language to build a highly easy-to-use and high-throughput inference service. How to choose which one please see [Techinical Selection](doc/Serving_Design_EN.md#21-design-selection).
- Support multiple [protocols](doc/C++_Serving/Inference_Protocols_CN.md) such as HTTP, gRPC, bRPC, and provide C++, Python, Java language SDK.
- Design and implement a high-performance inference service framework for asynchronous pipelines based on directed acyclic graph (DAG), with features such as multi-model combination, asynchronous scheduling, concurrent inference, dynamic batch, multi-card multi-stream inference, etc.
- Adapt to a variety of commonly used computing hardwares, such as x86 (Intel) CPU, ARM CPU, Nvidia GPU, Kunlun XPU, etc.; Integrate acceleration libraries of Intel MKLDNN and Nvidia TensorRT, and low-precision and quantitative inference.
- Provide a model security deployment solution, including encryption model deployment, and authentication mechanism, HTTPs security gateway, which is used in practice.
- Support cloud deployment, provide a deployment case of Baidu Cloud Intelligent Cloud kubernetes cluster.
- Provide more than 40 classic pre-model deployment examples, such as PaddleOCR, PaddleClas, PaddleDetection, PaddleSeg, PaddleNLP, PaddleRec and other suites, and more models continue to expand.
......
......@@ -41,31 +41,10 @@ https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.0.0-cp
https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.0.0-py3-none-any.whl
```
## Baidu Kunlun user
for kunlun user who uses arm-xpu or x86-xpu can download the wheel packages as follows. Users should use the xpu-beta docker [DOCKER IMAGES](./Docker_Images_CN.md)
**We only support Python 3.6 for Kunlun Users.**
### Wheel Package Links
for arm kunlun user
```
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_aarch64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_aarch64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_aarch64.whl
```
for x86 kunlun user
```
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_x86_64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_x86_64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_x86_64.whl
```
### Binary Package
## Binary Package
for most users, we do not need to read this section. But if you deploy your Paddle Serving on a machine without network, you will encounter a problem that the binary executable tar file cannot be downloaded. Therefore, here we give you all the download links for various environment.
#### Bin links
### Bin links
```
# CPU AVX MKL
https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-cpu-avx-mkl-0.0.0.tar.gz
......@@ -83,9 +62,32 @@ https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-1028-0.0.0.tar.gz
https://paddle-serving.bj.bcebos.com/test-dev/bin/serving-gpu-112-0.0.0.tar.gz
```
#### How to setup SERVING_BIN offline?
### How to setup SERVING_BIN offline?
- download the serving server whl package and bin package, and make sure they are for the same environment
- download the serving client whl and serving app whl, pay attention to the Python version.
- `pip install ` the serving and `tar xf ` the binary package, then `export SERVING_BIN=$PWD/serving-gpu-cuda11-0.0.0/serving` (take Cuda 11 as the example)
## Baidu Kunlun user
for kunlun user who uses arm-xpu or x86-xpu can download the wheel packages as follows. Users should use the xpu-beta docker [DOCKER IMAGES](./Docker_Images_CN.md)
**We only support Python 3.6 for Kunlun Users.**
### Wheel Package Links
for arm kunlun user
```
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_aarch64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_aarch64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_aarch64.whl
```
for x86 kunlun user
```
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_server_xpu-0.7.0.post2-cp36-cp36m-linux_x86_64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_client-0.7.0-cp36-cp36m-linux_x86_64.whl
https://paddle-serving.bj.bcebos.com/whl/xpu/0.7.0/paddle_serving_app-0.7.0-cp36-cp36m-linux_x86_64.whl
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册