Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
05a28109
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
05a28109
编写于
5月 19, 2021
作者:
J
Jiawei Wang
提交者:
GitHub
5月 19, 2021
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1255 from bjjwwang/develop
rm some redundant files in PaddleClas
上级
75370e75
1710d91c
变更
33
隐藏空白更改
内联
并排
Showing
33 changed file
with
0 addition
and
1165 deletion
+0
-1165
python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml
...mples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml.template
...eline/PaddleClas/DarkNet53/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/DarkNet53/benchmark_gpu.sh
...n/examples/pipeline/PaddleClas/DarkNet53/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml
...les/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml.template
...ine/PaddleClas/HRNet_W18_C/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_gpu.sh
...examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml
...les/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml.template
...ine/PaddleClas/MobileNetV1/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_gpu.sh
...examples/pipeline/PaddleClas/MobileNetV1/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml
...les/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml.template
...ine/PaddleClas/MobileNetV2/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_gpu.sh
...examples/pipeline/PaddleClas/MobileNetV2/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml
...e/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml.template
...las/MobileNetV3_large_x1_0/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_gpu.sh
...peline/PaddleClas/MobileNetV3_large_x1_0/benchmark_gpu.sh
+0
-41
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml
...line/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml.template
...leClas/ResNeXt101_vd_64x4d/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_gpu.sh
.../pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml
...les/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml.template
...ine/PaddleClas/ResNet50_vd/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_gpu.sh
...examples/pipeline/PaddleClas/ResNet50_vd/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml
...ipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml.template
...addleClas/ResNet50_vd_FPGM/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_gpu.sh
...les/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml
.../pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml.template
.../PaddleClas/ResNet50_vd_KL/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_gpu.sh
...mples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml
...ipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml.template
...addleClas/ResNet50_vd_PACT/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_gpu.sh
...les/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_gpu.sh
+0
-42
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml
...peline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml
+0
-32
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml.template
...ddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml.template
+0
-32
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_gpu.sh
...es/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_gpu.sh
+0
-42
未找到文件。
python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
DarkNet53"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/DarkNet53/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
HRNet_W18_C"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
MobileNetV1"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
MobileNetV2"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
MobileNetV3_large_x1_0"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
ResNeXt101_vd_64x4d"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
ResNet50_vd"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
ResNet50_vd_FPGM"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_FPGM_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
ResNet50_vd_KL"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_KL_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
ResNet50_vd_PACT"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_PACT_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version
:
"
10.1"
cudnn_version
:
"
7.6"
trt_version
:
"
6.0"
python_version
:
"
3.7"
gcc_version
:
"
8.2"
paddle_version
:
"
2.0.1"
cpu
:
"
Intel(R)
Xeon(R)
Gold
5117
CPU
@
2.00GHz
X12"
gpu
:
"
T4"
xpu
:
"
None"
api
:
"
"
owner
:
"
cuicheng01"
model_name
:
"
ShuffleNetV2_x1_0"
model_type
:
"
static"
model_source
:
"
PaddleClas"
model_url
:
"
https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_0_pretrained.tar"
batch_size
:
1
num_of_samples
:
1000
input_shape
:
"
3,224,224"
runtime_device
:
"
gpu"
ir_optim
:
true
enable_memory_optim
:
true
enable_tensorrt
:
false
precision
:
"
fp32"
enable_mkldnn
:
false
cpu_math_library_num_threads
:
"
"
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml.template
已删除
100644 → 0
浏览文件 @
75370e75
cuda_version: "10.1"
cudnn_version: "7.6"
trt_version: "6.0"
python_version: "3.7"
gcc_version: "8.2"
paddle_version: "2.0.1"
cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12"
gpu: "T4"
xpu: "None"
api: ""
owner: "cuicheng01"
model_name: "imagenet"
model_type: "static"
model_source: "PaddleClas"
model_url: "model_url_path"
batch_size: 1
num_of_samples: 1000
input_shape: "3,224,224"
runtime_device: "cpu"
ir_optim: true
enable_memory_optim: true
enable_tensorrt: false
precision: "fp32"
enable_mkldnn: false
cpu_math_library_num_threads: ""
python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_gpu.sh
已删除
100644 → 0
浏览文件 @
75370e75
export
FLAGS_profile_pipeline
=
1
alias
python3
=
"python3.7"
modelname
=
"imagenet"
use_gpu
=
1
gpu_id
=
"0"
benchmark_config_filename
=
"benchmark_config.yaml"
# HTTP
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
sleep
3
if
[
$use_gpu
-eq
1
]
;
then
python3 benchmark.py yaml local_predictor 1 gpu
$gpu_id
else
python3 benchmark.py yaml local_predictor 1 cpu
fi
rm
-rf
profile_log_
$modelname
for
thread_num
in
1
do
for
batch_size
in
1
do
echo
"#----imagenet thread num:
$thread_num
batch size:
$batch_size
mode:http use_gpu:
$use_gpu
----"
>>
profile_log_
$modelname
rm
-rf
PipelineServingLogs
rm
-rf
cpu_utilization.py
python3 resnet50_web_service.py
>
web.log 2>&1 &
sleep
3
nvidia-smi
--id
=
${
gpu_id
}
--query-compute-apps
=
used_memory
--format
=
csv
-lms
100
>
gpu_use.log 2>&1 &
nvidia-smi
--id
=
${
gpu_id
}
--query-gpu
=
utilization.gpu
--format
=
csv
-lms
100
>
gpu_utilization.log 2>&1 &
echo
"import psutil
\n
cpu_utilization=psutil.cpu_percent(1,False)
\n
print('CPU_UTILIZATION:', cpu_utilization)
\n
"
>
cpu_utilization.py
python3 benchmark.py run http
$thread_num
$batch_size
python3 cpu_utilization.py
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.profiler
>>
profile_log_
$modelname
ps
-ef
|
grep
web_service |
awk
'{print $2}'
| xargs
kill
-9
ps
-ef
|
grep
nvidia-smi |
awk
'{print $2}'
| xargs
kill
-9
python3 benchmark.py dump benchmark.log benchmark.tmp
mv
benchmark.tmp benchmark.log
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}'
gpu_use.log
>>
profile_log_
$modelname
awk
'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}'
gpu_utilization.log
>>
profile_log_
$modelname
cat
benchmark.log
>>
profile_log_
$modelname
python3
-m
paddle_serving_server_gpu.parse_profile
--benchmark_cfg
$benchmark_config_filename
--benchmark_log
profile_log_
$modelname
#rm -rf gpu_use.log gpu_utilization.log
done
done
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录