diff --git a/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml deleted file mode 100644 index 273d687d7a43c0bec5b06c7fd4484e156b0aeddc..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "DarkNet53" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/DarkNet53/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml deleted file mode 100644 index d18be38d776a0f46aced2e550c70c02c1ac8fb12..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "HRNet_W18_C" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/HRNet_W18_C/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml deleted file mode 100644 index 86d84934b99649981998cee10f72a3864f28716e..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "MobileNetV1" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV1/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml deleted file mode 100644 index 7f3ac0790fef2604529dd0107c863d7346ffa077..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "MobileNetV2" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_gpu.sh deleted file mode 100644 index 872dee1f5ee7d568fca8337897bf3232fcabcae1..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV2/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml deleted file mode 100644 index 1d9c39d3e078cbd92cd2f9f82ba053e1bce8f79d..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "MobileNetV3_large_x1_0" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_gpu.sh deleted file mode 100644 index bf7fea1efe78666059b7ff2a0dd51bb6991ee5fa..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/MobileNetV3_large_x1_0/benchmark_gpu.sh +++ /dev/null @@ -1,41 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml deleted file mode 100644 index cd73b0f10c3008808787a14006ca8fe87a85e697..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "ResNeXt101_vd_64x4d" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNeXt101_vd_64x4d/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml deleted file mode 100644 index 085d9f9d33d6670bcfcd8b9b113eb5413f7a7046..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "ResNet50_vd" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml deleted file mode 100644 index 4338b381f3df360fa71e7039ca1636b55262c45f..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "ResNet50_vd_FPGM" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_FPGM_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_FPGM/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml deleted file mode 100644 index 786c5d11b3764276fceaff4c87cdcb28f05688b8..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "ResNet50_vd_KL" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_KL_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_KL/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml deleted file mode 100644 index 4387732519dfc033a29dd3f797e66ec97a5200a4..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "ResNet50_vd_PACT" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_PACT_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ResNet50_vd_PACT/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done diff --git a/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml b/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml deleted file mode 100644 index d7b853688c7c4161a9a5c2699c6fe14dc9bf0c57..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "ShuffleNetV2_x1_0" -model_type: "static" -model_source: "PaddleClas" -model_url: "https://paddle-imagenet-models-name.bj.bcebos.com/ShuffleNetV2_x1_0_pretrained.tar" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "gpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml.template b/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml.template deleted file mode 100644 index e98ffb74a35533d831999b6e47bb1acafb0648ff..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_config.yaml.template +++ /dev/null @@ -1,32 +0,0 @@ - -cuda_version: "10.1" -cudnn_version: "7.6" -trt_version: "6.0" -python_version: "3.7" -gcc_version: "8.2" -paddle_version: "2.0.1" - -cpu: "Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz X12" -gpu: "T4" -xpu: "None" -api: "" -owner: "cuicheng01" - -model_name: "imagenet" -model_type: "static" -model_source: "PaddleClas" -model_url: "model_url_path" - -batch_size: 1 -num_of_samples: 1000 -input_shape: "3,224,224" - -runtime_device: "cpu" -ir_optim: true -enable_memory_optim: true -enable_tensorrt: false -precision: "fp32" -enable_mkldnn: false -cpu_math_library_num_threads: "" - - diff --git a/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_gpu.sh b/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_gpu.sh deleted file mode 100644 index 8b249ca5d344a140ca7165f531bd63be0bfade61..0000000000000000000000000000000000000000 --- a/python/examples/pipeline/PaddleClas/ShuffleNetV2_x1_0/benchmark_gpu.sh +++ /dev/null @@ -1,42 +0,0 @@ -export FLAGS_profile_pipeline=1 -alias python3="python3.7" -modelname="imagenet" -use_gpu=1 -gpu_id="0" -benchmark_config_filename="benchmark_config.yaml" - -# HTTP -ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 -sleep 3 -if [ $use_gpu -eq 1 ]; then - python3 benchmark.py yaml local_predictor 1 gpu $gpu_id -else - python3 benchmark.py yaml local_predictor 1 cpu -fi -rm -rf profile_log_$modelname -for thread_num in 1 -do - for batch_size in 1 - do - echo "#----imagenet thread num: $thread_num batch size: $batch_size mode:http use_gpu:$use_gpu----" >>profile_log_$modelname - rm -rf PipelineServingLogs - rm -rf cpu_utilization.py - python3 resnet50_web_service.py >web.log 2>&1 & - sleep 3 - nvidia-smi --id=${gpu_id} --query-compute-apps=used_memory --format=csv -lms 100 > gpu_use.log 2>&1 & - nvidia-smi --id=${gpu_id} --query-gpu=utilization.gpu --format=csv -lms 100 > gpu_utilization.log 2>&1 & - echo "import psutil\ncpu_utilization=psutil.cpu_percent(1,False)\nprint('CPU_UTILIZATION:', cpu_utilization)\n" > cpu_utilization.py - python3 benchmark.py run http $thread_num $batch_size - python3 cpu_utilization.py >>profile_log_$modelname - python3 -m paddle_serving_server_gpu.profiler >>profile_log_$modelname - ps -ef | grep web_service | awk '{print $2}' | xargs kill -9 - ps -ef | grep nvidia-smi | awk '{print $2}' | xargs kill -9 - python3 benchmark.py dump benchmark.log benchmark.tmp - mv benchmark.tmp benchmark.log - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_MEM:", max}' gpu_use.log >> profile_log_$modelname - awk 'BEGIN {max = 0} {if(NR>1){if ($modelname > max) max=$modelname}} END {print "GPU_UTIL:", max}' gpu_utilization.log >> profile_log_$modelname - cat benchmark.log >> profile_log_$modelname - python3 -m paddle_serving_server_gpu.parse_profile --benchmark_cfg $benchmark_config_filename --benchmark_log profile_log_$modelname - #rm -rf gpu_use.log gpu_utilization.log - done -done