text_det_client.py 1.7 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from paddle_serving_client import Client
from paddle_serving_app.reader import Sequential, File2Image, ResizeByFactor
from paddle_serving_app.reader import Div, Normalize, Transpose
from paddle_serving_app.reader import DBPostProcess, FilterBoxes

client = Client()
client.load_client_config("ocr_det_client/serving_client_conf.prototxt")
client.connect(["127.0.0.1:9494"])

read_image_file = File2Image()
preprocess = Sequential([
    ResizeByFactor(32, 960), Div(255),
    Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose(
        (2, 0, 1))
])
post_func = DBPostProcess({
    "thresh": 0.3,
    "box_thresh": 0.5,
    "max_candidates": 1000,
    "unclip_ratio": 1.5,
    "min_size": 3
})
filter_func = FilterBoxes(10, 10)

img = read_image_file(name)
ori_h, ori_w, _ = img.shape
img = preprocess(img)
new_h, new_w, _ = img.shape
ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w]
outputs = client.predict(feed={"image": img}, fetch=["concat_1.tmp_0"])
dt_boxes_list = post_func(outputs["concat_1.tmp_0"], [ratio_list])
dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])