# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from paddle_serving_client import Client from paddle_serving_app.reader import Sequential, File2Image, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import DBPostProcess, FilterBoxes client = Client() client.load_client_config("ocr_det_client/serving_client_conf.prototxt") client.connect(["127.0.0.1:9494"]) read_image_file = File2Image() preprocess = Sequential([ ResizeByFactor(32, 960), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) filter_func = FilterBoxes(10, 10) img = read_image_file(name) ori_h, ori_w, _ = img.shape img = preprocess(img) new_h, new_w, _ = img.shape ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w] outputs = client.predict(feed={"image": img}, fetch=["concat_1.tmp_0"]) dt_boxes_list = post_func(outputs["concat_1.tmp_0"], [ratio_list]) dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w])