benchmark.py 4.9 KB
Newer Older
1 2
# -*- coding: utf-8 -*-
#
M
MRXLT 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
16
# pylint: disable=doc-string-missing
M
MRXLT 已提交
17

18 19
from __future__ import unicode_literals, absolute_import
import os
M
MRXLT 已提交
20
import sys
21
import time
M
MRXLT 已提交
22 23
import json
import requests
M
MRXLT 已提交
24 25
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
M
MRXLT 已提交
26
from paddle_serving_client.utils import benchmark_args, show_latency
M
MRXLT 已提交
27
from paddle_serving_app.reader import ChineseBertReader
M
MRXLT 已提交
28

29
args = benchmark_args()
M
MRXLT 已提交
30

B
barrierye 已提交
31

32 33
def single_func(idx, resource):
    fin = open("data-c.txt")
M
MRXLT 已提交
34 35 36
    dataset = []
    for line in fin:
        dataset.append(line.strip())
M
MRXLT 已提交
37

M
MRXLT 已提交
38
    profile_flags = False
M
MRXLT 已提交
39
    latency_flags = False
M
MRXLT 已提交
40 41
    if os.getenv("FLAGS_profile_client"):
        profile_flags = True
M
MRXLT 已提交
42 43 44 45
    if os.getenv("FLAGS_serving_latency"):
        latency_flags = True
        latency_list = []

46
    if args.request == "rpc":
M
MRXLT 已提交
47
        reader = ChineseBertReader({"max_seq_len": 128})
48 49 50
        fetch = ["pooled_output"]
        client = Client()
        client.load_client_config(args.model)
M
MRXLT 已提交
51
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
52
        start = time.time()
M
MRXLT 已提交
53 54
        for i in range(turns):
            if args.batch_size >= 1:
M
MRXLT 已提交
55
                l_start = time.time()
M
MRXLT 已提交
56 57 58 59 60
                feed_batch = []
                b_start = time.time()
                for bi in range(args.batch_size):
                    feed_batch.append(reader.process(dataset[bi]))
                b_end = time.time()
M
MRXLT 已提交
61

M
MRXLT 已提交
62 63 64 65 66 67 68
                if profile_flags:
                    sys.stderr.write(
                        "PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
                            os.getpid(),
                            int(round(b_start * 1000000)),
                            int(round(b_end * 1000000))))
                result = client.predict(feed=feed_batch, fetch=fetch)
M
MRXLT 已提交
69 70 71 72

                l_end = time.time()
                if latency_flags:
                    latency_list.append(l_end * 1000 - l_start * 1000)
M
MRXLT 已提交
73 74 75
            else:
                print("unsupport batch size {}".format(args.batch_size))

76
    elif args.request == "http":
M
MRXLT 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
        reader = ChineseBertReader({"max_seq_len": 128})
        fetch = ["pooled_output"]
        server = "http://" + resource["endpoint"][idx % len(resource[
            "endpoint"])] + "/bert/prediction"
        start = time.time()
        for i in range(turns):
            if args.batch_size >= 1:
                l_start = time.time()
                feed_batch = []
                b_start = time.time()
                for bi in range(args.batch_size):
                    feed_batch.append({"words": dataset[bi]})
                req = json.dumps({"feed": feed_batch, "fetch": fetch})
                b_end = time.time()

                if profile_flags:
                    sys.stderr.write(
                        "PROFILE\tpid:{}\tbert_pre_0:{} bert_pre_1:{}\n".format(
                            os.getpid(),
                            int(round(b_start * 1000000)),
                            int(round(b_end * 1000000))))
                result = requests.post(
                    server,
                    data=req,
                    headers={"Content-Type": "application/json"})
                l_end = time.time()
                if latency_flags:
                    latency_list.append(l_end * 1000 - l_start * 1000)
            else:
                print("unsupport batch size {}".format(args.batch_size))

    else:
        raise ValueError("not implemented {} request".format(args.request))
M
MRXLT 已提交
110
    end = time.time()
M
MRXLT 已提交
111 112 113 114
    if latency_flags:
        return [[end - start], latency_list]
    else:
        return [[end - start]]
M
MRXLT 已提交
115

B
barrierye 已提交
116

M
MRXLT 已提交
117
if __name__ == '__main__':
118
    multi_thread_runner = MultiThreadRunner()
M
MRXLT 已提交
119
    endpoint_list = ["127.0.0.1:9292"]
M
MRXLT 已提交
120
    turns = 10
M
MRXLT 已提交
121 122 123 124
    start = time.time()
    result = multi_thread_runner.run(
        single_func, args.thread, {"endpoint": endpoint_list,
                                   "turns": turns})
M
MRXLT 已提交
125 126 127
    end = time.time()
    total_cost = end - start

M
MRXLT 已提交
128 129 130 131
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
M
MRXLT 已提交
132

M
MRXLT 已提交
133 134 135 136
    print("total cost :{} s".format(total_cost))
    print("each thread cost :{} s. ".format(avg_cost))
    print("qps :{} samples/s".format(args.batch_size * args.thread * turns /
                                     total_cost))
M
MRXLT 已提交
137 138
    if os.getenv("FLAGS_serving_latency"):
        show_latency(result[1])