Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
d78f545c
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
d78f545c
编写于
5月 07, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ce script
上级
54597c48
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
72 addition
and
13 deletion
+72
-13
python/examples/bert/benchmark.py
python/examples/bert/benchmark.py
+21
-4
python/examples/bert/benchmark.sh
python/examples/bert/benchmark.sh
+9
-5
python/examples/bert/prepare_model.py
python/examples/bert/prepare_model.py
+5
-4
python/paddle_serving_client/utils/__init__.py
python/paddle_serving_client/utils/__init__.py
+12
-0
tools/serving_ce.sh
tools/serving_ce.sh
+25
-0
未找到文件。
python/examples/bert/benchmark.py
浏览文件 @
d78f545c
...
...
@@ -21,7 +21,7 @@ import sys
import
time
from
paddle_serving_client
import
Client
from
paddle_serving_client.utils
import
MultiThreadRunner
from
paddle_serving_client.utils
import
benchmark_args
from
paddle_serving_client.utils
import
benchmark_args
,
show_latency
from
batching
import
pad_batch_data
import
tokenization
import
requests
...
...
@@ -35,11 +35,18 @@ def single_func(idx, resource):
dataset
=
[]
for
line
in
fin
:
dataset
.
append
(
line
.
strip
())
profile_flags
=
False
latency_flags
=
False
if
os
.
getenv
(
"FLAGS_profile_client"
):
profile_flags
=
True
if
os
.
getenv
(
"FLAGS_serving_latency"
):
latency_flags
=
True
latency_list
=
[]
if
args
.
request
==
"rpc"
:
reader
=
BertReader
(
vocab_file
=
"vocab.txt"
,
max_seq_len
=
20
)
fetch
=
[
"pooled_output"
]
client
=
Client
()
client
.
load_client_config
(
args
.
model
)
...
...
@@ -47,11 +54,13 @@ def single_func(idx, resource):
start
=
time
.
time
()
for
i
in
range
(
turns
):
if
args
.
batch_size
>=
1
:
l_start
=
time
.
time
()
feed_batch
=
[]
b_start
=
time
.
time
()
for
bi
in
range
(
args
.
batch_size
):
feed_batch
.
append
(
reader
.
process
(
dataset
[
bi
]))
b_end
=
time
.
time
()
if
profile_flags
:
sys
.
stderr
.
write
(
"PROFILE
\t
pid:{}
\t
bert_pre_0:{} bert_pre_1:{}
\n
"
.
format
(
...
...
@@ -59,13 +68,17 @@ def single_func(idx, resource):
int
(
round
(
b_start
*
1000000
)),
int
(
round
(
b_end
*
1000000
))))
result
=
client
.
predict
(
feed
=
feed_batch
,
fetch
=
fetch
)
l_end
=
time
.
time
()
if
latency_flags
:
latency_list
.
append
(
l_end
*
1000
-
l_start
*
1000
)
else
:
print
(
"unsupport batch size {}"
.
format
(
args
.
batch_size
))
elif
args
.
request
==
"http"
:
raise
(
"not implemented"
)
end
=
time
.
time
()
return
[[
end
-
start
]]
return
[[
end
-
start
]
,
latency_list
]
if
__name__
==
'__main__'
:
...
...
@@ -78,13 +91,17 @@ if __name__ == '__main__':
result
=
multi_thread_runner
.
run
(
single_func
,
args
.
thread
,
{
"endpoint"
:
endpoint_list
,
"turns"
:
turns
})
end
=
time
.
time
()
total_cost
=
end
-
start
avg_cost
=
0
for
i
in
range
(
args
.
thread
):
avg_cost
+=
result
[
0
][
i
]
avg_cost
=
avg_cost
/
args
.
thread
end
=
time
.
time
()
total_cost
=
end
-
start
print
(
"total cost :{} s"
.
format
(
total_cost
))
print
(
"each thread cost :{} s. "
.
format
(
avg_cost
))
print
(
"qps :{} samples/s"
.
format
(
args
.
batch_size
*
args
.
thread
*
turns
/
total_cost
))
if
os
.
getenv
(
"FLAGS_serving_latency"
):
show_latency
(
result
[
1
])
python/examples/bert/benchmark.sh
浏览文件 @
d78f545c
...
...
@@ -2,24 +2,28 @@ rm profile_log
export
CUDA_VISIBLE_DEVICES
=
0,1,2,3
export
FLAGS_profile_server
=
1
export
FLAGS_profile_client
=
1
python
-m
paddle_serving_server_gpu.serve
--model
bert_seq20_model/
--port
9292
--thread
4
--gpu_ids
0,1,2,3 2> elog
>
stdlog &
export
FLAGS_serving_latency
=
1
python
-m
paddle_serving_server_gpu.serve
--model
$1
--port
9292
--thread
4
--gpu_ids
0,1,2,3 2> elog
>
stdlog &
sleep
5
#warm up
$PYTHONROOT
/bin/python benchmark.py
--thread
8
--batch_size
1
--model
./bert_seq20_client
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
$PYTHONROOT
/bin/python benchmark.py
--thread
8
--batch_size
1
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
for
thread_num
in
8 16 32
for
thread_num
in
4 8 16
do
for
batch_size
in
1 4 16 64 256
do
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
./bert_seq20_client/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
$PYTHONROOT
/bin/python benchmark.py
--thread
$thread_num
--batch_size
$batch_size
--model
$2
/serving_client_conf.prototxt
--request
rpc
>
profile 2>&1
echo
"model name :"
$1
echo
"thread num :"
$thread_num
echo
"batch size :"
$batch_size
echo
"=================Done===================="
echo
"model name :
$1
"
>>
profile_log
echo
"batch size :
$batch_size
"
>>
profile_log
$PYTHONROOT
/bin/python ../util/show_profile.py profile
$thread_num
>>
profile_log
tail
-n
3 profile
>>
profile_log
tail
-n
8 profile
>>
profile_log
echo
""
>>
profile_log
done
done
...
...
python/examples/bert/prepare_model.py
浏览文件 @
d78f545c
...
...
@@ -17,10 +17,11 @@ import paddle.fluid as fluid
import
sys
import
paddle_serving_client.io
as
serving_io
model_name
=
"bert_chinese_L-12_H-768_A-12"
#model_name = "bert_chinese_L-12_H-768_A-12"
model_name
=
sys
.
argv
[
1
]
module
=
hub
.
Module
(
model_name
)
inputs
,
outputs
,
program
=
module
.
context
(
trainable
=
True
,
max_seq_len
=
int
(
sys
.
argv
[
1
]))
trainable
=
True
,
max_seq_len
=
int
(
sys
.
argv
[
2
]))
place
=
fluid
.
core_avx
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
input_ids
=
inputs
[
"input_ids"
]
...
...
@@ -37,8 +38,8 @@ feed_var_names = [
target_vars
=
[
pooled_output
,
sequence_output
]
serving_io
.
save_model
(
"
bert_seq{}_model"
.
format
(
sys
.
argv
[
1
]),
"
bert_seq{}_client"
.
format
(
sys
.
argv
[
1
]),
{
"
{}_seq{}_model"
.
format
(
sys
.
argv
[
1
],
sys
.
argv
[
2
]),
"
{}_seq{}_client"
.
format
(
sys
.
argv
[
1
],
sys
.
argv
[
2
]),
{
"input_ids"
:
input_ids
,
"position_ids"
:
position_ids
,
"segment_ids"
:
segment_ids
,
...
...
python/paddle_serving_client/utils/__init__.py
浏览文件 @
d78f545c
...
...
@@ -17,6 +17,7 @@ import sys
import
subprocess
import
argparse
from
multiprocessing
import
Pool
import
numpy
as
np
def
benchmark_args
():
...
...
@@ -35,6 +36,17 @@ def benchmark_args():
return
parser
.
parse_args
()
def
show_latency
(
latency_list
):
latency_array
=
np
.
array
(
latency_list
)
info
=
""
info
+=
"mean :{} ms
\n
"
.
format
(
np
.
mean
(
latency_array
))
info
+=
"median :{} ms
\n
"
.
format
(
np
.
median
(
latency_array
))
info
+=
"80 percent :{} ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
80
))
info
+=
"90 percent :{} ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
90
))
info
+=
"99 percent :{} ms
\n
"
.
format
(
np
.
percentile
(
latency_array
,
99
))
sys
.
stderr
.
write
(
info
)
class
MultiThreadRunner
(
object
):
def
__init__
(
self
):
pass
...
...
tools/serving_ce.sh
0 → 100644
浏览文件 @
d78f545c
set
-x
set
-v
function
get_model
(){
if
[
!
-d
"bert_cased_L-12_H-768_A-12_model"
]
;
then
python
-c
"from paddle_serving_app.models import ServingModels; models = ServingModels();
\
models.download(
\"
$1
\"
)"
tar
-xzf
$1
.tar.gz
fi
}
function
bert_demo
(){
cd
../python/examples/bert
python prepare_model.py bert_chinese_L-12_H-768_A-12 20
sh benchmark.sh bert_chinese_L-12_H-768_A-12_seq20_model bert_chinese_L-12_H-768_A-12_seq20_client
python prepare_model.py ernie_tiny 20
sh benchmark.sh ernie_tiny_seq20_model ernie_tiny_seq20_client
cd
-
}
function
imagenet_demo
(){
cd
../python/examples/imagenet
sh get_model.sh
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录