image_reader.py 27.5 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dongdaxiang 已提交
14 15 16
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
M
MRXLT 已提交
17
import cv2
18
import os
M
MRXLT 已提交
19
import numpy as np
20
import base64
M
MRXLT 已提交
21
import sys
M
MRXLT 已提交
22
from . import functional as F
23
from PIL import Image, ImageDraw
D
dongdaxiang 已提交
24 25
from shapely.geometry import Polygon
import pyclipper
26
import json
27

28
_cv2_interpolation_to_str = {cv2.INTER_LINEAR: "cv2.INTER_LINEAR", None: "None"}
M
MRXLT 已提交
29 30 31 32 33
py_version = sys.version_info[0]
if py_version == 2:
    import urllib
else:
    import urllib.request as urllib
34 35


36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
def generate_colormap(num_classes):
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    return color_map


D
dongdaxiang 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

    def __init__(self, params):
        self.thresh = params['thresh']
        self.box_thresh = params['box_thresh']
        self.max_candidates = params['max_candidates']
        self.unclip_ratio = params['unclip_ratio']
        self.min_size = 3

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]

        num_contours = min(len(contours), self.max_candidates)
        boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
        scores = np.zeros((num_contours, ), dtype=np.float32)

        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)
            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
            boxes[index, :, :] = box.astype(np.int16)
            scores[index] = score
        return boxes, scores

    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

    def __call__(self, pred, ratio_list):
        pred = pred[:, 0, :, :]
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
            height, width = pred.shape[-2:]
            tmp_boxes, tmp_scores = self.boxes_from_bitmap(
                pred[batch_index], segmentation[batch_index], width, height)

            boxes = []
            for k in range(len(tmp_boxes)):
                if tmp_scores[k] > self.box_thresh:
                    boxes.append(tmp_boxes[k])
            if len(boxes) > 0:
                boxes = np.array(boxes)

                ratio_h, ratio_w = ratio_list[batch_index]
                boxes[:, :, 0] = boxes[:, :, 0] / ratio_w
                boxes[:, :, 1] = boxes[:, :, 1] / ratio_h

            boxes_batch.append(boxes)
        return boxes_batch

    def __repr__(self):
        return self.__class__.__name__ + \
            " thresh: {1}, box_thresh: {2}, max_candidates: {3}, unclip_ratio: {4}, min_size: {5}".format(
                self.thresh, self.box_thresh, self.max_candidates, self.unclip_ratio, self.min_size)


class FilterBoxes(object):
    def __init__(self, width, height):
        self.filter_width = width
        self.filter_height = height

    def order_points_clockwise(self, pts):
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
        # sort the points based on their x-coordinates
        """
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

    def clip_det_res(self, points, img_height, img_width):
        for pno in range(4):
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
        return points

    def __call__(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
            box = self.clip_det_res(box, img_height, img_width)
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= self.filter_width or \
               rect_height <= self.filter_height:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

    def __repr__(self):
        return self.__class__.__name__ + " filter_width: {1}, filter_height: {2}".format(
            self.filter_width, self.filter_height)


241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
class SegPostprocess(object):
    def __init__(self, class_num):
        self.class_num = class_num

    def __call__(self, image_with_result):
        if "filename" not in image_with_result:
            raise ("filename should be specified in postprocess")
        img_name = image_with_result["filename"]
        ori_img = cv2.imread(img_name, -1)
        ori_shape = ori_img.shape
        mask = None
        for key in image_with_result:
            if ".lod" in key or "filename" in key:
                continue
            mask = image_with_result[key]
        if mask is None:
            raise ("segment mask should be specified in postprocess")
        mask = mask.astype("uint8")
        mask_png = mask.reshape((512, 512, 1))
        #score_png = mask_png[:, :, np.newaxis]
        score_png = mask_png
        score_png = np.concatenate([score_png] * 3, axis=2)
        color_map = generate_colormap(self.class_num)
        for i in range(score_png.shape[0]):
            for j in range(score_png.shape[1]):
                score_png[i, j] = color_map[score_png[i, j, 0]]
        ext_pos = img_name.rfind(".")
        img_name_fix = img_name[:ext_pos] + "_" + img_name[ext_pos + 1:]
        mask_save_name = img_name_fix + "_mask.png"
        cv2.imwrite(mask_save_name, mask_png, [cv2.CV_8UC1])
        vis_result_name = img_name_fix + "_result.png"
        result_png = score_png

        result_png = cv2.resize(
W
wangjiawei04 已提交
275
            result_png, (ori_shape[1], ori_shape[0]),
276 277 278 279 280 281
            fx=0,
            fy=0,
            interpolation=cv2.INTER_CUBIC)
        cv2.imwrite(vis_result_name, result_png, [cv2.CV_8UC1])


282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
class RCNNPostprocess(object):
    def __init__(self, label_file, output_dir):
        self.output_dir = output_dir
        self.label_file = label_file
        self.label_list = []
        with open(label_file) as fin:
            for line in fin:
                self.label_list.append(line.strip())
        self.clsid2catid = {i: i for i in range(len(self.label_list))}
        self.catid2name = {i: name for i, name in enumerate(self.label_list)}

    def _offset_to_lengths(self, lod):
        offset = lod[0]
        lengths = [offset[i + 1] - offset[i] for i in range(len(offset) - 1)]
        return [lengths]

    def _bbox2out(self, results, clsid2catid, is_bbox_normalized=False):
        xywh_res = []
        for t in results:
            bboxes = t['bbox'][0]
            lengths = t['bbox'][1][0]
            if bboxes.shape == (1, 1) or bboxes is None:
                continue

            k = 0
            for i in range(len(lengths)):
                num = lengths[i]
                for j in range(num):
                    dt = bboxes[k]
                    clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
                    catid = (clsid2catid[int(clsid)])

                    if is_bbox_normalized:
                        xmin, ymin, xmax, ymax = \
                            self.clip_bbox([xmin, ymin, xmax, ymax])
                        w = xmax - xmin
                        h = ymax - ymin
                        im_shape = t['im_shape'][0][i].tolist()
                        im_height, im_width = int(im_shape[0]), int(im_shape[1])
                        xmin *= im_width
                        ymin *= im_height
                        w *= im_width
                        h *= im_height
                    else:
                        w = xmax - xmin + 1
                        h = ymax - ymin + 1

                    bbox = [xmin, ymin, w, h]
                    coco_res = {
                        'category_id': catid,
                        'bbox': bbox,
                        'score': score
                    }
                    xywh_res.append(coco_res)
                    k += 1
        return xywh_res

    def _get_bbox_result(self, fetch_map, fetch_name, clsid2catid):
        result = {}
        is_bbox_normalized = False
        output = fetch_map[fetch_name]
        lod = [fetch_map[fetch_name + '.lod']]
        lengths = self._offset_to_lengths(lod)
        np_data = np.array(output)
        result['bbox'] = (np_data, lengths)
        result['im_id'] = np.array([[0]])

        bbox_results = self._bbox2out([result], clsid2catid, is_bbox_normalized)
        return bbox_results

    def color_map(self, num_classes):
        color_map = num_classes * [0, 0, 0]
        for i in range(0, num_classes):
            j = 0
            lab = i
            while lab:
                color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
                color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
                color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
                j += 1
                lab >>= 3
        color_map = np.array(color_map).reshape(-1, 3)
        return color_map

    def draw_bbox(self, image, catid2name, bboxes, threshold, color_list):
        """
        draw bbox on image
        """
        draw = ImageDraw.Draw(image)

        for dt in np.array(bboxes):
            catid, bbox, score = dt['category_id'], dt['bbox'], dt['score']
            if score < threshold:
                continue

            xmin, ymin, w, h = bbox
            xmax = xmin + w
            ymax = ymin + h

            color = tuple(color_list[catid])

            # draw bbox
            draw.line(
                [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
                 (xmin, ymin)],
                width=2,
                fill=color)

            # draw label
            text = "{} {:.2f}".format(catid2name[catid], score)
            tw, th = draw.textsize(text)
            draw.rectangle(
                [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
            draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))

        return image

    def visualize(self, infer_img, bbox_results, catid2name, num_classes):
        image = Image.open(infer_img).convert('RGB')
        color_list = self.color_map(num_classes)
        image = self.draw_bbox(image, self.catid2name, bbox_results, 0.5,
                               color_list)
        image_path = os.path.split(infer_img)[-1]
        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, image_path)
        image.save(out_path, quality=95)

    def __call__(self, image_with_bbox):
        fetch_name = ""
        for key in image_with_bbox:
            if key == "image":
                continue
            if ".lod" in key:
                continue
            fetch_name = key
        bbox_result = self._get_bbox_result(image_with_bbox, fetch_name,
                                            self.clsid2catid)
        if os.path.isdir(self.output_dir) is False:
            os.mkdir(self.output_dir)
        self.visualize(image_with_bbox["image"], bbox_result, self.catid2name,
                       len(self.label_list))
        if os.path.isdir(self.output_dir) is False:
            os.mkdir(self.output_dir)
        bbox_file = os.path.join(self.output_dir, 'bbox.json')
        with open(bbox_file, 'w') as f:
            json.dump(bbox_result, f, indent=4)

    def __repr__(self):
        return self.__class__.__name__ + "label_file: {1}, output_dir: {2}".format(
            self.label_file, self.output_dir)


435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
class Sequential(object):
    """
    Args:
        sequence (sequence of ``Transform`` objects): list of transforms to chain.

    This API references some of the design pattern of torchvision
    Users can simply use this API in training as well

    Example:
        >>> image_reader.Sequnece([
        >>>     transforms.CenterCrop(10),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string_ = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string_ += '\n'
            format_string_ += '    {0}'.format(t)
        format_string_ += '\n)'
        return format_string_


466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
class RGB2BGR(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img[:, :, ::-1]

    def __repr__(self):
        return self.__class__.__name__ + "()"


class BGR2RGB(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img[:, :, ::-1]

    def __repr__(self):
        return self.__class__.__name__ + "()"


488 489 490 491 492
class File2Image(object):
    def __init__(self):
        pass

    def __call__(self, img_path):
M
MRXLT 已提交
493 494 495 496
        if py_version == 2:
            fin = open(img_path)
        else:
            fin = open(img_path, "rb")
497 498 499
        sample = fin.read()
        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)
500 501 502 503 504 505
        '''
        img = cv2.imread(img_path, -1)
        channels = img.shape[2]
        ori_h = img.shape[0]
        ori_w = img.shape[1]
        '''
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


class URL2Image(object):
    def __init__(self):
        pass

    def __call__(self, img_url):
        resp = urllib.urlopen(img_url)
        sample = resp.read()
        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
class Base64ToImage(object):
    def __init__(self):
        pass

    def __call__(self, img_base64):
        img = base64.b64decode(img_base64)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


class Div(object):
    """ divide by some float number """

    def __init__(self, value):
        self.value = value

    def __call__(self, img):
        """
        Args:
            img (numpy array): (int8 numpy array)

        Returns:
            img (numpy array): (float32 numpy array)
        """
        img = img.astype('float32') / self.value

        return img

    def __repr__(self):
        return self.__class__.__name__ + "({})".format(self.value)


561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
class Normalize(object):
    """Normalize a tensor image with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.

    """

576
    def __init__(self, mean, std, channel_first=False):
577 578
        self.mean = mean
        self.std = std
579
        self.channel_first = channel_first
580 581 582 583 584 585 586 587 588

    def __call__(self, img):
        """
        Args:
            img (numpy array): (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
589
        return F.normalize(img, self.mean, self.std, self.channel_first)
590 591 592 593 594 595

    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean,
                                                                      self.std)


596 597
class Lambda(object):
    """Apply a user-defined lambda as a transform.
M
MRXLT 已提交
598
       Very shame to just copy from
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
       https://github.com/pytorch/vision/blob/master/torchvision/transforms/transforms.py#L301

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
        assert callable(lambd), repr(type(lambd)
                                     .__name__) + " object is not callable"
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

    def __repr__(self):
        return self.__class__.__name__ + '()'


617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
class CenterCrop(object):
    """Crops the given Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        self.size = size

    def __call__(self, img):
        """
        Args:
            img (numpy array): Image to be cropped.

        Returns:
            numpy array Image: Cropped image.
        """
        return F.crop(img, self.size, True)

    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)


class Resize(object):
    """Resize the input numpy array Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
653
            ``None``
654 655
    """

656
    def __init__(self, size, max_size=2147483647, interpolation=None):
657
        self.size = size
658
        self.max_size = max_size
659 660 661
        self.interpolation = interpolation

    def __call__(self, img):
662
        return F.resize(img, self.size, self.max_size, self.interpolation)
663

664
    def __repr__(self):
665 666 667
        return self.__class__.__name__ + '(size={0}, max_size={1}, interpolation={2})'.format(
            self.size, self.max_size,
            _cv2_interpolation_to_str[self.interpolation])
M
MRXLT 已提交
668 669


D
dongdaxiang 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
class ResizeByFactor(object):
    """Resize the input numpy array Image to a size multiple of factor which is usually required by a network

    Args:
        factor (int): Resize factor. make width and height multiple factor of the value of factor. Default is 32
        max_side_len (int): max size of width and height. if width or height is larger than max_side_len, just resize the width or the height. Default is 2400
    """

    def __init__(self, factor=32, max_side_len=2400):
        self.factor = factor
        self.max_side_len = max_side_len

    def __call__(self, img):
        h, w, _ = img.shape
        resize_w = w
        resize_h = h
        if max(resize_h, resize_w) > self.max_side_len:
            if resize_h > resize_w:
                ratio = float(self.max_side_len) / resize_h
            else:
                ratio = float(self.max_side_len) / resize_w
        else:
            ratio = 1.
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)
        if resize_h % self.factor == 0:
            resize_h = resize_h
        elif resize_h // self.factor <= 1:
            resize_h = self.factor
        else:
            resize_h = (resize_h // 32 - 1) * 32
        if resize_w % self.factor == 0:
            resize_w = resize_w
        elif resize_w // self.factor <= 1:
            resize_w = self.factor
        else:
            resize_w = (resize_w // self.factor - 1) * self.factor
        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            im = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(resize_w, resize_h)
            sys.exit(0)
        return im

    def __repr__(self):
        return self.__class__.__name__ + '(factor={0}, max_side_len={1})'.format(
            self.factor, self.max_side_len)


W
wangjiawei04 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
class PadStride(object):
    def __init__(self, stride):
        self.coarsest_stride = stride

    def __call__(self, img):
        coarsest_stride = self.coarsest_stride
        if coarsest_stride == 0:
            return img
        im_c, im_h, im_w = img.shape
        pad_h = int(np.ceil(float(im_h) / coarsest_stride) * coarsest_stride)
        pad_w = int(np.ceil(float(im_w) / coarsest_stride) * coarsest_stride)
        padding_im = np.zeros((im_c, pad_h, pad_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        im_info = {}
        im_info['resize_shape'] = padding_im.shape[1:]
        return padding_im


739 740 741 742 743 744 745 746 747 748 749 750 751 752
class Transpose(object):
    def __init__(self, transpose_target):
        self.transpose_target = transpose_target

    def __call__(self, img):
        return F.transpose(img, self.transpose_target)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + \
                        "({})".format(self.transpose_target)
        return format_string


M
MRXLT 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
class ImageReader():
    def __init__(self,
                 image_shape=[3, 224, 224],
                 image_mean=[0.485, 0.456, 0.406],
                 image_std=[0.229, 0.224, 0.225],
                 resize_short_size=256,
                 interpolation=None,
                 crop_center=True):
        self.image_mean = image_mean
        self.image_std = image_std
        self.image_shape = image_shape
        self.resize_short_size = resize_short_size
        self.interpolation = interpolation
        self.crop_center = crop_center

    def resize_short(self, img, target_size, interpolation=None):
        """resize image

        Args:
            img: image data
            target_size: resize short target size
            interpolation: interpolation mode

        Returns:
            resized image data
        """
        percent = float(target_size) / min(img.shape[0], img.shape[1])
        resized_width = int(round(img.shape[1] * percent))
        resized_height = int(round(img.shape[0] * percent))
        if interpolation:
            resized = cv2.resize(
                img, (resized_width, resized_height),
                interpolation=interpolation)
        else:
            resized = cv2.resize(img, (resized_width, resized_height))
        return resized

    def crop_image(self, img, target_size, center):
        """crop image

        Args:
            img: images data
            target_size: crop target size
            center: crop mode

        Returns:
            img: cropped image data
        """
        height, width = img.shape[:2]
        size = target_size
        if center == True:
            w_start = (width - size) // 2
            h_start = (height - size) // 2
        else:
            w_start = np.random.randint(0, width - size + 1)
            h_start = np.random.randint(0, height - size + 1)
        w_end = w_start + size
        h_end = h_start + size
        img = img[h_start:h_end, w_start:w_end, :]
        return img

    def process_image(self, sample):
        """ process_image """
        mean = self.image_mean
        std = self.image_std
        crop_size = self.image_shape[1]

        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)

        if img is None:
            print("img is None, pass it.")
            return None

        if crop_size > 0:
            target_size = self.resize_short_size
            img = self.resize_short(
                img, target_size, interpolation=self.interpolation)
            img = self.crop_image(
                img, target_size=crop_size, center=self.crop_center)

        img = img[:, :, ::-1]

        img = img.astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        return img