image_reader.py 9.7 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
15
import urllib
M
MRXLT 已提交
16
import numpy as np
17 18 19
import base64
import functional as F

20
_cv2_interpolation_to_str = {cv2.INTER_LINEAR: "cv2.INTER_LINEAR", None: "None"}
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53


class Sequential(object):
    """
    Args:
        sequence (sequence of ``Transform`` objects): list of transforms to chain.

    This API references some of the design pattern of torchvision
    Users can simply use this API in training as well

    Example:
        >>> image_reader.Sequnece([
        >>>     transforms.CenterCrop(10),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string_ = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string_ += '\n'
            format_string_ += '    {0}'.format(t)
        format_string_ += '\n)'
        return format_string_


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
class RGB2BGR(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img[:, :, ::-1]

    def __repr__(self):
        return self.__class__.__name__ + "()"


class BGR2RGB(object):
    def __init__(self):
        pass

    def __call__(self, img):
        return img[:, :, ::-1]

    def __repr__(self):
        return self.__class__.__name__ + "()"


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class File2Image(object):
    def __init__(self):
        pass

    def __call__(self, img_path):
        fin = open(img_path)
        sample = fin.read()
        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


class URL2Image(object):
    def __init__(self):
        pass

    def __call__(self, img_url):
        resp = urllib.urlopen(img_url)
        sample = resp.read()
        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class Base64ToImage(object):
    def __init__(self):
        pass

    def __call__(self, img_base64):
        img = base64.b64decode(img_base64)
        return img

    def __repr__(self):
        return self.__class__.__name__ + "()"


class Div(object):
    """ divide by some float number """

    def __init__(self, value):
        self.value = value

    def __call__(self, img):
        """
        Args:
            img (numpy array): (int8 numpy array)

        Returns:
            img (numpy array): (float32 numpy array)
        """
        img = img.astype('float32') / self.value

        return img

    def __repr__(self):
        return self.__class__.__name__ + "({})".format(self.value)


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
class Normalize(object):
    """Normalize a tensor image with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    .. note::
        This transform acts out of place, i.e., it does not mutate the input tensor.

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.

    """

    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, img):
        """
        Args:
            img (numpy array): (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
        return F.normalize(img, self.mean, self.std)

    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean,
                                                                      self.std)


174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
class Lambda(object):
    """Apply a user-defined lambda as a transform.
       Very shame to just copy from 
       https://github.com/pytorch/vision/blob/master/torchvision/transforms/transforms.py#L301

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
        assert callable(lambd), repr(type(lambd)
                                     .__name__) + " object is not callable"
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

    def __repr__(self):
        return self.__class__.__name__ + '()'


195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
class CenterCrop(object):
    """Crops the given Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        self.size = size

    def __call__(self, img):
        """
        Args:
            img (numpy array): Image to be cropped.

        Returns:
            numpy array Image: Cropped image.
        """
        return F.crop(img, self.size, True)

    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)


class Resize(object):
    """Resize the input numpy array Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

234
    def __init__(self, size, interpolation=None):
235 236 237 238 239 240
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        return F.resize(img, self.size, self.interpolation)

241
    def __repr__(self):
242 243
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(
            self.size, _cv2_interpolation_to_str[self.interpolation])
M
MRXLT 已提交
244 245


246 247 248 249 250 251 252 253 254 255 256 257 258 259
class Transpose(object):
    def __init__(self, transpose_target):
        self.transpose_target = transpose_target

    def __call__(self, img):
        return F.transpose(img, self.transpose_target)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + \
                        "({})".format(self.transpose_target)
        return format_string


M
MRXLT 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
class ImageReader():
    def __init__(self,
                 image_shape=[3, 224, 224],
                 image_mean=[0.485, 0.456, 0.406],
                 image_std=[0.229, 0.224, 0.225],
                 resize_short_size=256,
                 interpolation=None,
                 crop_center=True):
        self.image_mean = image_mean
        self.image_std = image_std
        self.image_shape = image_shape
        self.resize_short_size = resize_short_size
        self.interpolation = interpolation
        self.crop_center = crop_center

    def resize_short(self, img, target_size, interpolation=None):
        """resize image

        Args:
            img: image data
            target_size: resize short target size
            interpolation: interpolation mode

        Returns:
            resized image data
        """
        percent = float(target_size) / min(img.shape[0], img.shape[1])
        resized_width = int(round(img.shape[1] * percent))
        resized_height = int(round(img.shape[0] * percent))
        if interpolation:
            resized = cv2.resize(
                img, (resized_width, resized_height),
                interpolation=interpolation)
        else:
            resized = cv2.resize(img, (resized_width, resized_height))
        return resized

    def crop_image(self, img, target_size, center):
        """crop image

        Args:
            img: images data
            target_size: crop target size
            center: crop mode

        Returns:
            img: cropped image data
        """
        height, width = img.shape[:2]
        size = target_size
        if center == True:
            w_start = (width - size) // 2
            h_start = (height - size) // 2
        else:
            w_start = np.random.randint(0, width - size + 1)
            h_start = np.random.randint(0, height - size + 1)
        w_end = w_start + size
        h_end = h_start + size
        img = img[h_start:h_end, w_start:w_end, :]
        return img

    def process_image(self, sample):
        """ process_image """
        mean = self.image_mean
        std = self.image_std
        crop_size = self.image_shape[1]

        data = np.fromstring(sample, np.uint8)
        img = cv2.imdecode(data, cv2.IMREAD_COLOR)

        if img is None:
            print("img is None, pass it.")
            return None

        if crop_size > 0:
            target_size = self.resize_short_size
            img = self.resize_short(
                img, target_size, interpolation=self.interpolation)
            img = self.crop_image(
                img, target_size=crop_size, center=self.crop_center)

        img = img[:, :, ::-1]

        img = img.astype('float32').transpose((2, 0, 1)) / 255
        img_mean = np.array(mean).reshape((3, 1, 1))
        img_std = np.array(std).reshape((3, 1, 1))
        img -= img_mean
        img /= img_std
        return img