benchmark.py 4.2 KB
Newer Older
T
TeslaZhao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

B
bjjwwang 已提交
15 16 17 18 19 20 21 22
import sys
import os
import yaml
import requests
import time
import json
import cv2
import base64
T
TeslaZhao 已提交
23 24

from paddle_serving_server.pipeline import PipelineClient
B
bjjwwang 已提交
25 26 27 28
import numpy as np
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args, show_latency

T
TeslaZhao 已提交
29

B
bjjwwang 已提交
30 31 32
def cv2_to_base64(image):
    return base64.b64encode(image).decode('utf8')

T
TeslaZhao 已提交
33

B
bjjwwang 已提交
34 35
def parse_benchmark(filein, fileout):
    with open(filein, "r") as fin:
36
        res = yaml.load(fin, yaml.FullLoader)
B
bjjwwang 已提交
37 38 39 40 41 42 43 44 45
        del_list = []
        for key in res["DAG"].keys():
            if "call" in key:
                del_list.append(key)
        for key in del_list:
            del res["DAG"][key]
    with open(fileout, "w") as fout:
        yaml.dump(res, fout, default_flow_style=False)

T
TeslaZhao 已提交
46

B
bjjwwang 已提交
47 48
def gen_yml(device, gpu_id):
    fin = open("config.yml", "r")
49
    config = yaml.load(fin, yaml.FullLoader)
B
bjjwwang 已提交
50 51 52 53
    fin.close()
    config["dag"]["tracer"] = {"interval_s": 30}
    if device == "gpu":
        config["op"]["faster_rcnn"]["local_service_conf"]["device_type"] = 1
T
TeslaZhao 已提交
54 55
        config["op"]["faster_rcnn"]["local_service_conf"]["devices"] = gpu_id
    with open("config2.yml", "w") as fout:
B
bjjwwang 已提交
56 57
        yaml.dump(config, fout, default_flow_style=False)

T
TeslaZhao 已提交
58

B
bjjwwang 已提交
59 60 61 62 63 64
def run_http(idx, batch_size):
    print("start thread ({})".format(idx))
    url = "http://127.0.0.1:18082/faster_rcnn/prediction"
    with open(os.path.join(".", "000000570688.jpg"), 'rb') as file:
        image_data1 = file.read()
    image = cv2_to_base64(image_data1)
B
bjjwwang 已提交
65
    latency_list = []
B
bjjwwang 已提交
66
    start = time.time()
B
bjjwwang 已提交
67
    total_num = 0
B
bjjwwang 已提交
68
    while True:
B
bjjwwang 已提交
69
        l_start = time.time()
B
bjjwwang 已提交
70 71 72 73 74
        data = {"key": [], "value": []}
        for j in range(batch_size):
            data["key"].append("image_" + str(j))
            data["value"].append(image)
        r = requests.post(url=url, data=json.dumps(data))
B
bjjwwang 已提交
75 76
        l_end = time.time()
        total_num += 1
B
bjjwwang 已提交
77
        end = time.time()
B
bjjwwang 已提交
78
        latency_list.append(l_end * 1000 - l_start * 1000)
B
bjjwwang 已提交
79
        if end - start > 70:
B
bjjwwang 已提交
80
            #print("70s end")
B
bjjwwang 已提交
81
            break
B
bjjwwang 已提交
82
    return [[end - start], latency_list, [total_num]]
B
bjjwwang 已提交
83

T
TeslaZhao 已提交
84

B
bjjwwang 已提交
85 86
def multithread_http(thread, batch_size):
    multi_thread_runner = MultiThreadRunner()
B
bjjwwang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
    start = time.time()
    result = multi_thread_runner.run(run_http, thread, batch_size)
    end = time.time()
    total_cost = end - start
    avg_cost = 0
    total_number = 0
    for i in range(thread):
        avg_cost += result[0][i]
        total_number += result[2][i]
    avg_cost = avg_cost / thread
    print("Total cost: {}s".format(total_cost))
    print("Each thread cost: {}s. ".format(avg_cost))
    print("Total count: {}. ".format(total_number))
    print("AVG QPS: {} samples/s".format(batch_size * total_number /
                                         total_cost))
    show_latency(result[1])
B
bjjwwang 已提交
103

T
TeslaZhao 已提交
104

B
bjjwwang 已提交
105 106 107
def run_rpc(thread, batch_size):
    pass

T
TeslaZhao 已提交
108

B
bjjwwang 已提交
109 110
def multithread_rpc(thraed, batch_size):
    multi_thread_runner = MultiThreadRunner()
T
TeslaZhao 已提交
111 112
    result = multi_thread_runner.run(run_rpc, thread, batch_size)

B
bjjwwang 已提交
113 114 115

if __name__ == "__main__":
    if sys.argv[1] == "yaml":
T
TeslaZhao 已提交
116
        mode = sys.argv[2]  # brpc/  local predictor
B
bjjwwang 已提交
117 118 119 120 121
        thread = int(sys.argv[3])
        device = sys.argv[4]
        gpu_id = sys.argv[5]
        gen_yml(device, gpu_id)
    elif sys.argv[1] == "run":
T
TeslaZhao 已提交
122
        mode = sys.argv[2]  # http/ rpc
B
bjjwwang 已提交
123 124 125 126 127 128 129 130 131 132
        thread = int(sys.argv[3])
        batch_size = int(sys.argv[4])
        if mode == "http":
            multithread_http(thread, batch_size)
        elif mode == "rpc":
            multithread_rpc(thread, batch_size)
    elif sys.argv[1] == "dump":
        filein = sys.argv[2]
        fileout = sys.argv[3]
        parse_benchmark(filein, fileout)