benchmark.py 4.8 KB
Newer Older
M
MRXLT 已提交
1 2
# -*- coding: utf-8 -*-
#
3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
# pylint: disable=doc-string-missing
17

M
MRXLT 已提交
18 19
from __future__ import unicode_literals, absolute_import
import os
20
import sys
M
MRXLT 已提交
21
import time
M
MRXLT 已提交
22 23 24
import requests
import json
import base64
25 26
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
M
MRXLT 已提交
27
from paddle_serving_client.utils import benchmark_args, show_latency
M
MRXLT 已提交
28
from paddle_serving_app.reader import Sequential, File2Image, Resize
M
MRXLT 已提交
29
from paddle_serving_app.reader import CenterCrop, RGB2BGR, Transpose, Div, Normalize
30 31 32

args = benchmark_args()

M
MRXLT 已提交
33
seq_preprocess = Sequential([
M
MRXLT 已提交
34
    File2Image(), Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
M
MRXLT 已提交
35 36 37
    Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], True)
])

38 39

def single_func(idx, resource):
M
MRXLT 已提交
40
    file_list = []
M
MRXLT 已提交
41 42 43 44 45
    turns = resource["turns"]
    latency_flags = False
    if os.getenv("FLAGS_serving_latency"):
        latency_flags = True
        latency_list = []
M
MRXLT 已提交
46 47 48 49
    for file_name in os.listdir("./image_data/n01440764"):
        file_list.append(file_name)
    img_list = []
    for i in range(1000):
M
MRXLT 已提交
50
        img_list.append("./image_data/n01440764/" + file_list[i])
M
MRXLT 已提交
51 52 53 54
    profile_flags = False
    if "FLAGS_profile_client" in os.environ and os.environ[
            "FLAGS_profile_client"]:
        profile_flags = True
55 56 57 58
    if args.request == "rpc":
        fetch = ["score"]
        client = Client()
        client.load_client_config(args.model)
B
barrierye 已提交
59
        client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
60
        start = time.time()
M
MRXLT 已提交
61
        for i in range(turns):
M
MRXLT 已提交
62
            if args.batch_size >= 1:
M
MRXLT 已提交
63
                l_start = time.time()
M
MRXLT 已提交
64
                feed_batch = []
M
MRXLT 已提交
65
                i_start = time.time()
M
MRXLT 已提交
66
                for bi in range(args.batch_size):
M
MRXLT 已提交
67
                    img = seq_preprocess(img_list[i])
M
MRXLT 已提交
68
                    feed_batch.append({"image": img})
M
MRXLT 已提交
69 70 71 72 73 74 75
                i_end = time.time()
                if profile_flags:
                    print("PROFILE\tpid:{}\timage_pre_0:{} image_pre_1:{}".
                          format(os.getpid(),
                                 int(round(i_start * 1000000)),
                                 int(round(i_end * 1000000))))

M
MRXLT 已提交
76
                result = client.predict(feed=feed_batch, fetch=fetch)
M
MRXLT 已提交
77 78 79
                l_end = time.time()
                if latency_flags:
                    latency_list.append(l_end * 1000 - l_start * 1000)
M
MRXLT 已提交
80 81 82 83
            else:
                print("unsupport batch size {}".format(args.batch_size))

    elif args.request == "http":
M
MRXLT 已提交
84
        py_version = sys.version_info[0]
M
MRXLT 已提交
85 86
        server = "http://" + resource["endpoint"][idx % len(resource[
            "endpoint"])] + "/image/prediction"
87
        start = time.time()
M
MRXLT 已提交
88
        for i in range(turns):
M
MRXLT 已提交
89 90 91 92
            if py_version == 2:
                image = base64.b64encode(
                    open("./image_data/n01440764/" + file_list[i]).read())
            else:
M
MRXLT 已提交
93
                image_path = "./image_data/n01440764/" + file_list[i]
M
MRXLT 已提交
94 95 96 97 98
                image = base64.b64encode(open(image_path, "rb").read()).decode(
                    "utf-8")
            req = json.dumps({"feed": [{"image": image}], "fetch": ["score"]})
            r = requests.post(
                server, data=req, headers={"Content-Type": "application/json"})
M
MRXLT 已提交
99
    end = time.time()
M
MRXLT 已提交
100 101
    if latency_flags:
        return [[end - start], latency_list]
102 103 104
    return [[end - start]]


M
MRXLT 已提交
105
if __name__ == '__main__':
106
    multi_thread_runner = MultiThreadRunner()
M
MRXLT 已提交
107 108 109
    endpoint_list = [
        "127.0.0.1:9292", "127.0.0.1:9293", "127.0.0.1:9294", "127.0.0.1:9295"
    ]
M
MRXLT 已提交
110
    turns = 100
M
MRXLT 已提交
111 112 113 114
    start = time.time()
    result = multi_thread_runner.run(
        single_func, args.thread, {"endpoint": endpoint_list,
                                   "turns": turns})
M
MRXLT 已提交
115
    #result = single_func(0, {"endpoint": endpoint_list})
M
MRXLT 已提交
116 117
    end = time.time()
    total_cost = end - start
M
MRXLT 已提交
118 119 120 121
    avg_cost = 0
    for i in range(args.thread):
        avg_cost += result[0][i]
    avg_cost = avg_cost / args.thread
M
MRXLT 已提交
122 123 124 125 126 127
    print("total cost: {}s".format(end - start))
    print("each thread cost: {}s.".format(avg_cost))
    print("qps: {}samples/s".format(args.batch_size * args.thread * turns /
                                    total_cost))
    if os.getenv("FLAGS_serving_latency"):
        show_latency(result[1])