提交 3cde0cf4 编写于 作者: M MRXLT

temp commit

上级 60a00069
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
......@@ -13,13 +15,16 @@
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import unicode_literals, absolute_import
import os
import sys
from image_reader import ImageReader
import time
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import time
import os
import requests
import json
from image_reader import ImageReader
args = benchmark_args()
......@@ -37,24 +42,31 @@ def single_func(idx, resource):
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(1000):
img = reader.process_image(img_list[i]).reshape(-1)
fetch_map = client.predict(feed={"image": img}, fetch=["score"])
end = time.time()
return [[end - start]]
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
img = reader.process_image(img_list[i])
img = img.reshape(-1)
feed_batch.append({"image": img})
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("no batch predict for http")
end = time.time()
return [[end - start]]
if __name__ == "__main__":
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
#card_num = 4
#for i in range(args.thread):
# endpoint_list.append("127.0.0.1:{}".format(9295 + i % card_num))
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
#result = single_func(0, {"endpoint": endpoint_list})
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
......
rm profile_log
for thread_num in 1 2 4 8 16
export CUDA_VISIBLE_DEVICES=0,1,2,3
export FLAGS_profile_server=1
export FLAGS_profile_client=1
python -m paddle_serving_server_gpu.serve --model $1 --port 9292 --thread 4 --gpu_ids 0,1,2,3 2> elog > stdlog &
sleep 5
#warm up
$PYTHONROOT/bin/python benchmark.py --thread 8 --batch_size 1 --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
for thread_num in 4 8 16
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --model ResNet101_vd_client_config/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
for batch_size in 1 4 16 64 256
do
$PYTHONROOT/bin/python benchmark.py --thread $thread_num --batch_size $batch_size --model $2/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "model name :" $1
echo "thread num :" $thread_num
echo "batch size :" $batch_size
echo "=================Done===================="
echo "model name :$1" >> profile_log
echo "batch size :$batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
tail -n 8 profile >> profile_log
done
done
ps -ef|grep 'serving'|grep -v grep|cut -c 9-15 | xargs kill -9
# -*- coding: utf-8 -*-
#
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
from __future__ import unicode_literals, absolute_import
import os
import sys
import time
from paddle_serving_client import Client
from paddle_serving_client.utils import MultiThreadRunner
from paddle_serving_client.utils import benchmark_args
import requests
import json
from image_reader import ImageReader
args = benchmark_args()
def single_func(idx, resource):
file_list = []
for file_name in os.listdir("./image_data/n01440764"):
file_list.append(file_name)
img_list = []
for i in range(1000):
img_list.append(open("./image_data/n01440764/" + file_list[i]).read())
if args.request == "rpc":
reader = ImageReader()
fetch = ["score"]
client = Client()
client.load_client_config(args.model)
client.connect([resource["endpoint"][idx % len(resource["endpoint"])]])
start = time.time()
for i in range(1000):
if args.batch_size >= 1:
feed_batch = []
for bi in range(args.batch_size):
img = reader.process_image(img_list[i])
img = img.reshape(-1)
feed_batch.append({"image": img})
result = client.predict(feed=feed_batch, fetch=fetch)
else:
print("unsupport batch size {}".format(args.batch_size))
elif args.request == "http":
raise ("no batch predict for http")
end = time.time()
return [[end - start]]
if __name__ == '__main__':
multi_thread_runner = MultiThreadRunner()
endpoint_list = ["127.0.0.1:9393"]
#endpoint_list = endpoint_list + endpoint_list + endpoint_list
result = multi_thread_runner.run(single_func, args.thread,
{"endpoint": endpoint_list})
#result = single_func(0, {"endpoint": endpoint_list})
avg_cost = 0
for i in range(args.thread):
avg_cost += result[0][i]
avg_cost = avg_cost / args.thread
print("average total cost {} s.".format(avg_cost))
rm profile_log
for thread_num in 1 2 4 8 16
do
for batch_size in 1 2 4 8 16 32 64 128 256 512
do
$PYTHONROOT/bin/python benchmark_batch.py --thread $thread_num --batch_size $batch_size --model ResNet101_vd_client_config/serving_client_conf.prototxt --request rpc > profile 2>&1
echo "========================================"
echo "batch size : $batch_size" >> profile_log
$PYTHONROOT/bin/python ../util/show_profile.py profile $thread_num >> profile_log
tail -n 1 profile >> profile_log
done
done
......@@ -84,6 +84,22 @@ class ServingModels(object):
self.model_dict[
key] = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/image/ImageClassification/" + key + ".tar.gz"
#SemanticModel
for key in [
"bert_cased_L-12_H-768_A-12", "bert_cased_L-24_H-1024_A-12",
"bert_chinese_L-12_H-768_A-12",
"bert_multi_cased_L-12_H-768_A-12",
"bert_multi_uncased_L-12_H-768_A-12",
"bert_uncased_L-12_H-768_A-12", "bert_uncased_L-24_H-1024_A-16",
"chinese-bert-wwm-ext", "chinese-bert-wwm",
"chinese-electra-base", "chinese-electra-small",
"chinese-electra-small", "chinese-roberta-wwm-ext", "ernie",
"ernie_tiny", "ernie_v2_eng_base", "ernie_v2_eng_large", "rbt3",
"rbtl3", "simnet_bow", "word2vec_skipgram"
]:
self.model_dict[
key] = "https://paddle-serving.bj.bcebos.com/paddle_hub_models/text/SemanticModel/" + key + ".tar.gz"
def get_model_list(self):
return (self.model_dict.keys())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册