resource.cpp 11.6 KB
Newer Older
W
wangguibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

G
guru4elephant 已提交
15
#include "core/predictor/framework/resource.h"
G
guru4elephant 已提交
16
#include <sstream>
W
wangguibao 已提交
17
#include <string>
G
guru4elephant 已提交
18 19
#include "core/predictor/common/inner_common.h"
#include "core/predictor/framework/kv_manager.h"
20 21 22
#ifdef BCLOUD
#include "aipe_sec_client.h"  // NOLINT
#endif
W
wangguibao 已提交
23 24 25 26
namespace baidu {
namespace paddle_serving {
namespace predictor {

W
wangguibao 已提交
27
using configure::ResourceConf;
G
guru4elephant 已提交
28
using configure::GeneralModelConfig;
X
xulongteng 已提交
29
using rec::mcube::CubeAPI;
W
wangguibao 已提交
30

31 32
std::vector<std::shared_ptr<PaddleGeneralModelConfig>>
Resource::get_general_model_config() {
H
HexToString 已提交
33
  return _configs;
G
guru4elephant 已提交
34 35 36
}

void Resource::print_general_model_config(
37
    const std::shared_ptr<PaddleGeneralModelConfig>& config) {
G
guru4elephant 已提交
38 39 40 41
  if (config == nullptr) {
    LOG(INFO) << "paddle general model config is not set";
    return;
  }
42
  LOG(INFO) << "Number of Feed Tensor: " << config->_feed_name.size();
G
guru4elephant 已提交
43
  std::ostringstream oss;
44 45 46 47 48 49 50
  LOG(INFO) << "Feed Name Info";
  for (auto& feed_name : config->_feed_name) {
    oss << feed_name << " ";
  }
  LOG(INFO) << oss.str();
  oss.clear();
  oss.str("");
G
guru4elephant 已提交
51
  LOG(INFO) << "Feed Type Info";
52
  for (auto& feed_type : config->_feed_type) {
G
guru4elephant 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    oss << feed_type << " ";
  }
  LOG(INFO) << oss.str();
  oss.clear();
  oss.str("");
  LOG(INFO) << "Lod Type Info";

  for (auto is_lod : config->_is_lod_feed) {
    oss << is_lod << " ";
  }

  LOG(INFO) << oss.str();
  oss.clear();
  oss.str("");
  LOG(INFO) << "Capacity Info";
68
  for (auto& cap : config->_capacity) {
G
guru4elephant 已提交
69 70 71 72 73 74 75
    oss << cap << " ";
  }
  LOG(INFO) << oss.str();
  oss.clear();
  oss.str("");
  LOG(INFO) << "Feed Shape Info";
  int tensor_idx = 0;
76 77
  for (auto& shape : config->_feed_shape) {
    for (auto& dim : shape) {
G
guru4elephant 已提交
78 79 80 81 82 83 84 85
      oss << dim << " ";
    }
    LOG(INFO) << "Tensor[" << tensor_idx++ << "].shape: " << oss.str();
    oss.clear();
    oss.str("");
  }
}

W
wangguibao 已提交
86
int Resource::initialize(const std::string& path, const std::string& file) {
W
wangguibao 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99
  ResourceConf resource_conf;
  if (configure::read_proto_conf(path, file, &resource_conf) != 0) {
    LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file;
    return -1;
  }

  // mempool
  if (MempoolWrapper::instance().initialize() != 0) {
    LOG(ERROR) << "Failed proc initialized mempool wrapper";
    return -1;
  }
  LOG(WARNING) << "Successfully proc initialized mempool wrapper";

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef WITH_AUTH
  std::string product_name_str = resource_conf.auth_product_name();
  std::string container_id_str = resource_conf.auth_container_id();

  char* product_name = new char[product_name_str.size() + 1];
  snprintf(product_name,
           product_name_str.size() + 1,
           "%s",
           product_name_str.c_str());
  char* container_id = new char[container_id_str.size() + 1];
  snprintf(container_id,
           container_id_str.size() + 1,
           "%s",
           container_id_str.c_str());

  aipe_auth_request request;
  request.product_name = product_name;
  request.container_id = container_id;
  request.request_ts = (int64_t)time(NULL);

  LOG(INFO) << "\nEasypack info"
            << "\nproduct name: " << request.product_name
            << "\ncontainer_id: " << request.container_id
            << "\nrequest time stamp: " << request.request_ts;

  aipe_auth_response response;
  response = check_auth(request);

  if (response.result == 0) {
    LOG(INFO) << "Authentication succeed.";
  } else {
    LOG(ERROR) << "Authentication failed. Error code: " << response.result;
    return -1;
  }
#endif

W
wangguibao 已提交
136
  if (FLAGS_enable_model_toolkit) {
H
HexToString 已提交
137
    size_t model_toolkit_num = resource_conf.model_toolkit_path_size();
138
    for (size_t mi = 0; mi < model_toolkit_num; ++mi) {
H
HexToString 已提交
139 140 141 142 143 144
      std::string model_toolkit_path = resource_conf.model_toolkit_path(mi);
      std::string model_toolkit_file = resource_conf.model_toolkit_file(mi);

      if (InferManager::instance().proc_initialize(
              model_toolkit_path.c_str(), model_toolkit_file.c_str()) != 0) {
        LOG(ERROR) << "failed proc initialize modeltoolkit, config: "
145
                   << model_toolkit_path << "/" << model_toolkit_file;
H
HexToString 已提交
146 147 148 149 150 151
        return -1;
      }

      if (KVManager::instance().proc_initialize(
              model_toolkit_path.c_str(), model_toolkit_file.c_str()) != 0) {
        LOG(ERROR) << "Failed proc initialize kvmanager, config: "
152
                   << model_toolkit_path << "/" << model_toolkit_file;
H
HexToString 已提交
153
      }
W
wangguibao 已提交
154
    }
W
wangguibao 已提交
155 156
  }

W
wangjiawei04 已提交
157
  // init rocksDB or cube instance
W
wangjiawei04 已提交
158 159
  if (resource_conf.has_cube_config_file() &&
      resource_conf.has_cube_config_path()) {
W
wangjiawei04 已提交
160
    LOG(INFO) << "init cube client, path[ " << resource_conf.cube_config_path()
W
wangjiawei04 已提交
161 162 163 164 165
              << " ], config file [ " << resource_conf.cube_config_file()
              << " ].";
    rec::mcube::CubeAPI* cube = rec::mcube::CubeAPI::instance();
    std::string cube_config_fullpath = "./" + resource_conf.cube_config_path() +
                                       "/" + resource_conf.cube_config_file();
W
wangjiawei04 已提交
166
    this->cube_config_fullpath = cube_config_fullpath;
W
wangjiawei04 已提交
167 168 169 170 171 172 173 174 175 176 177 178
    this->cube_quant_bits = resource_conf.has_cube_quant_bits()
                                ? resource_conf.cube_quant_bits()
                                : 0;
    if (this->cube_quant_bits != 0 && this->cube_quant_bits != 8) {
      LOG(ERROR) << "Cube quant bits illegal! should be 0 or 8.";
      return -1;
    }
    if (this->cube_quant_bits == 0) {
      LOG(INFO) << "cube quant mode OFF";
    } else {
      LOG(INFO) << "cube quant mode ON, quant bits: " << this->cube_quant_bits;
    }
W
wangjiawei04 已提交
179
  }
W
wangjiawei04 已提交
180

W
wangguibao 已提交
181 182
  THREAD_SETSPECIFIC(_tls_bspec_key, NULL);
  return 0;
W
wangguibao 已提交
183 184
}

185 186 187
// model config
int Resource::general_model_initialize(const std::string& path,
                                       const std::string& file) {
W
wangjiawei04 已提交
188 189
  if (this->cube_config_fullpath.size() != 0) {
    LOG(INFO) << "init cube by config file : " << this->cube_config_fullpath;
W
wangjiawei04 已提交
190
    rec::mcube::CubeAPI* cube = rec::mcube::CubeAPI::instance();
W
wangjiawei04 已提交
191 192 193 194 195
    int ret = cube->init(this->cube_config_fullpath.c_str());
    if (ret != 0) {
      LOG(ERROR) << "cube init error";
      return -1;
    }
W
wangjiawei04 已提交
196
  }
197 198
  VLOG(2) << "general model path: " << path;
  VLOG(2) << "general model file: " << file;
G
guru4elephant 已提交
199
  if (!FLAGS_enable_general_model) {
200 201
    LOG(ERROR) << "general model is not enabled";
    return -1;
G
guru4elephant 已提交
202
  }
203 204 205 206 207
  ResourceConf resource_conf;
  if (configure::read_proto_conf(path, file, &resource_conf) != 0) {
    LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file;
    return -1;
  }
H
HexToString 已提交
208
  size_t general_model_num = resource_conf.general_model_path_size();
209
  for (size_t gi = 0; gi < general_model_num; ++gi) {
H
HexToString 已提交
210 211 212 213 214
    std::string general_model_path = resource_conf.general_model_path(gi);
    std::string general_model_file = resource_conf.general_model_file(gi);

    GeneralModelConfig model_config;
    if (configure::read_proto_conf(general_model_path.c_str(),
215 216 217 218
                                   general_model_file.c_str(),
                                   &model_config) != 0) {
      LOG(ERROR) << "Failed initialize model config from: "
                 << general_model_path << "/" << general_model_file;
H
HexToString 已提交
219 220 221 222 223 224 225 226 227 228 229 230
      return -1;
    }
    auto _config = std::make_shared<PaddleGeneralModelConfig>();
    int feed_var_num = model_config.feed_var_size();
    VLOG(2) << "load general model config";
    VLOG(2) << "feed var num: " << feed_var_num;
    _config->_feed_name.resize(feed_var_num);
    _config->_feed_alias_name.resize(feed_var_num);
    _config->_feed_type.resize(feed_var_num);
    _config->_is_lod_feed.resize(feed_var_num);
    _config->_capacity.resize(feed_var_num);
    _config->_feed_shape.resize(feed_var_num);
231
    for (int i = 0; i < feed_var_num; ++i) {
H
HexToString 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      _config->_feed_name[i] = model_config.feed_var(i).name();
      _config->_feed_alias_name[i] = model_config.feed_var(i).alias_name();
      VLOG(2) << "feed var[" << i << "]: " << _config->_feed_name[i];
      VLOG(2) << "feed var[" << i << "]: " << _config->_feed_alias_name[i];
      _config->_feed_type[i] = model_config.feed_var(i).feed_type();
      VLOG(2) << "feed type[" << i << "]: " << _config->_feed_type[i];

      if (model_config.feed_var(i).is_lod_tensor()) {
        VLOG(2) << "var[" << i << "] is lod tensor";
        _config->_feed_shape[i] = {-1};
        _config->_is_lod_feed[i] = true;
      } else {
        VLOG(2) << "var[" << i << "] is tensor";
        _config->_capacity[i] = 1;
        _config->_is_lod_feed[i] = false;
247
        for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) {
H
HexToString 已提交
248 249 250 251 252
          int32_t dim = model_config.feed_var(i).shape(j);
          VLOG(2) << "var[" << i << "].shape[" << i << "]: " << dim;
          _config->_feed_shape[i].push_back(dim);
          _config->_capacity[i] *= dim;
        }
G
guru4elephant 已提交
253 254
      }
    }
255

H
HexToString 已提交
256 257 258 259 260
    int fetch_var_num = model_config.fetch_var_size();
    _config->_is_lod_fetch.resize(fetch_var_num);
    _config->_fetch_name.resize(fetch_var_num);
    _config->_fetch_alias_name.resize(fetch_var_num);
    _config->_fetch_shape.resize(fetch_var_num);
261
    for (int i = 0; i < fetch_var_num; ++i) {
H
HexToString 已提交
262 263 264 265 266 267 268 269 270 271
      _config->_fetch_name[i] = model_config.fetch_var(i).name();
      _config->_fetch_alias_name[i] = model_config.fetch_var(i).alias_name();
      _config->_fetch_name_to_index[_config->_fetch_name[i]] = i;
      _config->_fetch_alias_name_to_index[_config->_fetch_alias_name[i]] = i;
      if (model_config.fetch_var(i).is_lod_tensor()) {
        VLOG(2) << "fetch var[" << i << "] is lod tensor";
        _config->_fetch_shape[i] = {-1};
        _config->_is_lod_fetch[i] = true;
      } else {
        _config->_is_lod_fetch[i] = false;
272
        for (int j = 0; j < model_config.fetch_var(i).shape_size(); ++j) {
H
HexToString 已提交
273 274 275
          int dim = model_config.fetch_var(i).shape(j);
          _config->_fetch_shape[i].push_back(dim);
        }
276
      }
277
    }
H
HexToString 已提交
278
    _configs.push_back(std::move(_config));
279
  }
G
guru4elephant 已提交
280
  return 0;
G
guru4elephant 已提交
281 282
}

W
wangguibao 已提交
283
int Resource::thread_initialize() {
W
wangguibao 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  // mempool
  if (MempoolWrapper::instance().thread_initialize() != 0) {
    LOG(ERROR) << "Failed thread initialized mempool wrapper";
    return -1;
  }
  LOG(WARNING) << "Successfully thread initialized mempool wrapper";

  // infer manager
  if (FLAGS_enable_model_toolkit &&
      InferManager::instance().thrd_initialize() != 0) {
    LOG(ERROR) << "Failed thrd initialized infer manager";
    return -1;
  }

  return 0;
W
wangguibao 已提交
299 300 301
}

int Resource::thread_clear() {
W
wangguibao 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314
  // mempool
  if (MempoolWrapper::instance().thread_clear() != 0) {
    LOG(ERROR) << "Failed thread clear mempool wrapper";
    return -1;
  }

  // infer manager
  if (FLAGS_enable_model_toolkit &&
      InferManager::instance().thrd_clear() != 0) {
    LOG(ERROR) << "Failed thrd clear infer manager";
    return -1;
  }
  return 0;
W
wangguibao 已提交
315
}
W
wangjiawei04 已提交
316
size_t Resource::get_cube_quant_bits() { return this->cube_quant_bits; }
W
wangguibao 已提交
317 318

int Resource::reload() {
W
wangguibao 已提交
319 320 321 322 323 324 325
  if (FLAGS_enable_model_toolkit && InferManager::instance().reload() != 0) {
    LOG(ERROR) << "Failed reload infer manager";
    return -1;
  }

  // other resource reload here...
  return 0;
W
wangguibao 已提交
326 327 328
}

int Resource::finalize() {
W
wangguibao 已提交
329 330 331 332 333
  if (FLAGS_enable_model_toolkit &&
      InferManager::instance().proc_finalize() != 0) {
    LOG(ERROR) << "Failed proc finalize infer manager";
    return -1;
  }
X
xulongteng 已提交
334 335 336 337
  if (CubeAPI::instance()->destroy() != 0) {
    LOG(ERROR) << "Destory cube api failed ";
    return -1;
  }
W
wangguibao 已提交
338
  THREAD_KEY_DELETE(_tls_bspec_key);
W
wangguibao 已提交
339

W
wangguibao 已提交
340
  return 0;
W
wangguibao 已提交
341 342
}

W
wangguibao 已提交
343 344 345
}  // namespace predictor
}  // namespace paddle_serving
}  // namespace baidu