// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "core/predictor/framework/resource.h" #include #include #include "core/predictor/common/inner_common.h" #include "core/predictor/framework/kv_manager.h" #ifdef BCLOUD #include "aipe_sec_client.h" // NOLINT #endif namespace baidu { namespace paddle_serving { namespace predictor { using configure::ResourceConf; using configure::GeneralModelConfig; using rec::mcube::CubeAPI; std::vector> Resource::get_general_model_config() { return _configs; } void Resource::print_general_model_config( const std::shared_ptr& config) { if (config == nullptr) { LOG(INFO) << "paddle general model config is not set"; return; } LOG(INFO) << "Number of Feed Tensor: " << config->_feed_name.size(); std::ostringstream oss; LOG(INFO) << "Feed Name Info"; for (auto& feed_name : config->_feed_name) { oss << feed_name << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Feed Type Info"; for (auto& feed_type : config->_feed_type) { oss << feed_type << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Lod Type Info"; for (auto is_lod : config->_is_lod_feed) { oss << is_lod << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Capacity Info"; for (auto& cap : config->_capacity) { oss << cap << " "; } LOG(INFO) << oss.str(); oss.clear(); oss.str(""); LOG(INFO) << "Feed Shape Info"; int tensor_idx = 0; for (auto& shape : config->_feed_shape) { for (auto& dim : shape) { oss << dim << " "; } LOG(INFO) << "Tensor[" << tensor_idx++ << "].shape: " << oss.str(); oss.clear(); oss.str(""); } } int Resource::initialize(const std::string& path, const std::string& file) { ResourceConf resource_conf; if (configure::read_proto_conf(path, file, &resource_conf) != 0) { LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file; return -1; } // mempool if (MempoolWrapper::instance().initialize() != 0) { LOG(ERROR) << "Failed proc initialized mempool wrapper"; return -1; } LOG(WARNING) << "Successfully proc initialized mempool wrapper"; #ifdef WITH_AUTH std::string product_name_str = resource_conf.auth_product_name(); std::string container_id_str = resource_conf.auth_container_id(); char* product_name = new char[product_name_str.size() + 1]; snprintf(product_name, product_name_str.size() + 1, "%s", product_name_str.c_str()); char* container_id = new char[container_id_str.size() + 1]; snprintf(container_id, container_id_str.size() + 1, "%s", container_id_str.c_str()); aipe_auth_request request; request.product_name = product_name; request.container_id = container_id; request.request_ts = (int64_t)time(NULL); LOG(INFO) << "\nEasypack info" << "\nproduct name: " << request.product_name << "\ncontainer_id: " << request.container_id << "\nrequest time stamp: " << request.request_ts; aipe_auth_response response; response = check_auth(request); if (response.result == 0) { LOG(INFO) << "Authentication succeed."; } else { LOG(ERROR) << "Authentication failed. Error code: " << response.result; return -1; } #endif if (FLAGS_enable_model_toolkit) { size_t model_toolkit_num = resource_conf.model_toolkit_path_size(); for (size_t mi = 0; mi < model_toolkit_num; ++mi) { std::string model_toolkit_path = resource_conf.model_toolkit_path(mi); std::string model_toolkit_file = resource_conf.model_toolkit_file(mi); if (InferManager::instance().proc_initialize( model_toolkit_path.c_str(), model_toolkit_file.c_str()) != 0) { LOG(ERROR) << "failed proc initialize modeltoolkit, config: " << model_toolkit_path << "/" << model_toolkit_file; return -1; } if (KVManager::instance().proc_initialize( model_toolkit_path.c_str(), model_toolkit_file.c_str()) != 0) { LOG(ERROR) << "Failed proc initialize kvmanager, config: " << model_toolkit_path << "/" << model_toolkit_file; } } } // init rocksDB or cube instance if (resource_conf.has_cube_config_file() && resource_conf.has_cube_config_path()) { LOG(INFO) << "init cube client, path[ " << resource_conf.cube_config_path() << " ], config file [ " << resource_conf.cube_config_file() << " ]."; rec::mcube::CubeAPI* cube = rec::mcube::CubeAPI::instance(); std::string cube_config_fullpath = "./" + resource_conf.cube_config_path() + "/" + resource_conf.cube_config_file(); this->cube_config_fullpath = cube_config_fullpath; this->cube_quant_bits = resource_conf.has_cube_quant_bits() ? resource_conf.cube_quant_bits() : 0; if (this->cube_quant_bits != 0 && this->cube_quant_bits != 8) { LOG(ERROR) << "Cube quant bits illegal! should be 0 or 8."; return -1; } if (this->cube_quant_bits == 0) { LOG(INFO) << "cube quant mode OFF"; } else { LOG(INFO) << "cube quant mode ON, quant bits: " << this->cube_quant_bits; } } THREAD_SETSPECIFIC(_tls_bspec_key, NULL); return 0; } // model config int Resource::general_model_initialize(const std::string& path, const std::string& file) { if (this->cube_config_fullpath.size() != 0) { LOG(INFO) << "init cube by config file : " << this->cube_config_fullpath; rec::mcube::CubeAPI* cube = rec::mcube::CubeAPI::instance(); int ret = cube->init(this->cube_config_fullpath.c_str()); if (ret != 0) { LOG(ERROR) << "cube init error"; return -1; } } VLOG(2) << "general model path: " << path; VLOG(2) << "general model file: " << file; if (!FLAGS_enable_general_model) { LOG(ERROR) << "general model is not enabled"; return -1; } ResourceConf resource_conf; if (configure::read_proto_conf(path, file, &resource_conf) != 0) { LOG(ERROR) << "Failed initialize resource from: " << path << "/" << file; return -1; } size_t general_model_num = resource_conf.general_model_path_size(); for (size_t gi = 0; gi < general_model_num; ++gi) { std::string general_model_path = resource_conf.general_model_path(gi); std::string general_model_file = resource_conf.general_model_file(gi); GeneralModelConfig model_config; if (configure::read_proto_conf(general_model_path.c_str(), general_model_file.c_str(), &model_config) != 0) { LOG(ERROR) << "Failed initialize model config from: " << general_model_path << "/" << general_model_file; return -1; } auto _config = std::make_shared(); int feed_var_num = model_config.feed_var_size(); VLOG(2) << "load general model config"; VLOG(2) << "feed var num: " << feed_var_num; _config->_feed_name.resize(feed_var_num); _config->_feed_alias_name.resize(feed_var_num); _config->_feed_type.resize(feed_var_num); _config->_is_lod_feed.resize(feed_var_num); _config->_capacity.resize(feed_var_num); _config->_feed_shape.resize(feed_var_num); for (int i = 0; i < feed_var_num; ++i) { _config->_feed_name[i] = model_config.feed_var(i).name(); _config->_feed_alias_name[i] = model_config.feed_var(i).alias_name(); VLOG(2) << "feed var[" << i << "]: " << _config->_feed_name[i]; VLOG(2) << "feed var[" << i << "]: " << _config->_feed_alias_name[i]; _config->_feed_type[i] = model_config.feed_var(i).feed_type(); VLOG(2) << "feed type[" << i << "]: " << _config->_feed_type[i]; if (model_config.feed_var(i).is_lod_tensor()) { VLOG(2) << "var[" << i << "] is lod tensor"; _config->_feed_shape[i] = {-1}; _config->_is_lod_feed[i] = true; } else { VLOG(2) << "var[" << i << "] is tensor"; _config->_capacity[i] = 1; _config->_is_lod_feed[i] = false; for (int j = 0; j < model_config.feed_var(i).shape_size(); ++j) { int32_t dim = model_config.feed_var(i).shape(j); VLOG(2) << "var[" << i << "].shape[" << i << "]: " << dim; _config->_feed_shape[i].push_back(dim); _config->_capacity[i] *= dim; } } } int fetch_var_num = model_config.fetch_var_size(); _config->_is_lod_fetch.resize(fetch_var_num); _config->_fetch_name.resize(fetch_var_num); _config->_fetch_alias_name.resize(fetch_var_num); _config->_fetch_shape.resize(fetch_var_num); for (int i = 0; i < fetch_var_num; ++i) { _config->_fetch_name[i] = model_config.fetch_var(i).name(); _config->_fetch_alias_name[i] = model_config.fetch_var(i).alias_name(); _config->_fetch_name_to_index[_config->_fetch_name[i]] = i; _config->_fetch_alias_name_to_index[_config->_fetch_alias_name[i]] = i; if (model_config.fetch_var(i).is_lod_tensor()) { VLOG(2) << "fetch var[" << i << "] is lod tensor"; _config->_fetch_shape[i] = {-1}; _config->_is_lod_fetch[i] = true; } else { _config->_is_lod_fetch[i] = false; for (int j = 0; j < model_config.fetch_var(i).shape_size(); ++j) { int dim = model_config.fetch_var(i).shape(j); _config->_fetch_shape[i].push_back(dim); } } } _configs.push_back(std::move(_config)); } return 0; } int Resource::thread_initialize() { // mempool if (MempoolWrapper::instance().thread_initialize() != 0) { LOG(ERROR) << "Failed thread initialized mempool wrapper"; return -1; } LOG(WARNING) << "Successfully thread initialized mempool wrapper"; // infer manager if (FLAGS_enable_model_toolkit && InferManager::instance().thrd_initialize() != 0) { LOG(ERROR) << "Failed thrd initialized infer manager"; return -1; } return 0; } int Resource::thread_clear() { // mempool if (MempoolWrapper::instance().thread_clear() != 0) { LOG(ERROR) << "Failed thread clear mempool wrapper"; return -1; } // infer manager if (FLAGS_enable_model_toolkit && InferManager::instance().thrd_clear() != 0) { LOG(ERROR) << "Failed thrd clear infer manager"; return -1; } return 0; } size_t Resource::get_cube_quant_bits() { return this->cube_quant_bits; } int Resource::reload() { if (FLAGS_enable_model_toolkit && InferManager::instance().reload() != 0) { LOG(ERROR) << "Failed reload infer manager"; return -1; } // other resource reload here... return 0; } int Resource::finalize() { if (FLAGS_enable_model_toolkit && InferManager::instance().proc_finalize() != 0) { LOG(ERROR) << "Failed proc finalize infer manager"; return -1; } if (CubeAPI::instance()->destroy() != 0) { LOG(ERROR) << "Destory cube api failed "; return -1; } THREAD_KEY_DELETE(_tls_bspec_key); return 0; } } // namespace predictor } // namespace paddle_serving } // namespace baidu