__init__.py 10.4 KB
Newer Older
G
guru4elephant 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
# pylint: disable=doc-string-missing
G
guru4elephant 已提交
15

M
MRXLT 已提交
16 17
import paddle_serving_client
import os
18 19 20
from .proto import sdk_configure_pb2 as sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
21
import sys
G
guru4elephant 已提交
22

G
guru4elephant 已提交
23 24 25
int_type = 0
float_type = 1

M
MRXLT 已提交
26

G
guru4elephant 已提交
27 28 29
class SDKConfig(object):
    def __init__(self):
        self.sdk_desc = sdk.SDKConf()
30 31 32
        self.tag_list = []
        self.cluster_list = []
        self.variant_weight_list = []
G
guru4elephant 已提交
33

34 35 36 37
    def add_server_variant(self, tag, cluster, variant_weight):
        self.tag_list.append(tag)
        self.cluster_list.append(cluster)
        self.variant_weight_list.append(variant_weight)
G
guru4elephant 已提交
38 39 40 41 42 43 44

    def gen_desc(self):
        predictor_desc = sdk.Predictor()
        predictor_desc.name = "general_model"
        predictor_desc.service_name = \
            "baidu.paddle_serving.predictor.general_model.GeneralModelService"
        predictor_desc.endpoint_router = "WeightedRandomRender"
45 46
        predictor_desc.weighted_random_render_conf.variant_weight_list = "|".join(
            self.variant_weight_list)
G
guru4elephant 已提交
47

48 49 50 51 52 53
        for idx, tag in enumerate(self.tag_list):
            variant_desc = sdk.VariantConf()
            variant_desc.tag = tag
            variant_desc.naming_conf.cluster = "list://{}".format(",".join(
                self.cluster_list[idx]))
            predictor_desc.variants.extend([variant_desc])
G
guru4elephant 已提交
54 55 56 57 58 59 60 61 62 63

        self.sdk_desc.predictors.extend([predictor_desc])
        self.sdk_desc.default_variant_conf.tag = "default"
        self.sdk_desc.default_variant_conf.connection_conf.connect_timeout_ms = 2000
        self.sdk_desc.default_variant_conf.connection_conf.rpc_timeout_ms = 20000
        self.sdk_desc.default_variant_conf.connection_conf.connect_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.max_connection_per_host = 100
        self.sdk_desc.default_variant_conf.connection_conf.hedge_request_timeout_ms = -1
        self.sdk_desc.default_variant_conf.connection_conf.hedge_fetch_retry_count = 2
        self.sdk_desc.default_variant_conf.connection_conf.connection_type = "pooled"
M
MRXLT 已提交
64

G
guru4elephant 已提交
65 66 67 68 69 70 71 72
        self.sdk_desc.default_variant_conf.naming_conf.cluster_filter_strategy = "Default"
        self.sdk_desc.default_variant_conf.naming_conf.load_balance_strategy = "la"

        self.sdk_desc.default_variant_conf.rpc_parameter.compress_type = 0
        self.sdk_desc.default_variant_conf.rpc_parameter.package_size = 20
        self.sdk_desc.default_variant_conf.rpc_parameter.protocol = "baidu_std"
        self.sdk_desc.default_variant_conf.rpc_parameter.max_channel_per_request = 3

G
guru4elephant 已提交
73
        return self.sdk_desc
G
guru4elephant 已提交
74

G
guru4elephant 已提交
75 76 77 78 79 80

class Client(object):
    def __init__(self):
        self.feed_names_ = []
        self.fetch_names_ = []
        self.client_handle_ = None
81
        self.result_handle_ = None
M
MRXLT 已提交
82
        self.feed_shapes_ = {}
G
guru4elephant 已提交
83
        self.feed_types_ = {}
G
guru4elephant 已提交
84
        self.feed_names_to_idx_ = {}
M
MRXLT 已提交
85
        self.rpath()
M
MRXLT 已提交
86
        self.pid = os.getpid()
B
barrierye 已提交
87
        self.predictor_sdk_ = None
G
guru4elephant 已提交
88 89
        self.producers = []
        self.consumer = None
M
MRXLT 已提交
90 91 92 93 94

    def rpath(self):
        lib_path = os.path.dirname(paddle_serving_client.__file__)
        client_path = os.path.join(lib_path, 'serving_client.so')
        lib_path = os.path.join(lib_path, 'lib')
M
MRXLT 已提交
95
        os.system('patchelf --set-rpath {} {}'.format(lib_path, client_path))
M
MRXLT 已提交
96

G
guru4elephant 已提交
97
    def load_client_config(self, path):
M
MRXLT 已提交
98
        from .serving_client import PredictorClient
99
        from .serving_client import PredictorRes
100 101 102 103 104
        model_conf = m_config.GeneralModelConfig()
        f = open(path, 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)

G
guru4elephant 已提交
105 106 107 108
        # load configuraion here
        # get feed vars, fetch vars
        # get feed shapes, feed types
        # map feed names to index
109
        self.result_handle_ = PredictorRes()
G
guru4elephant 已提交
110 111
        self.client_handle_ = PredictorClient()
        self.client_handle_.init(path)
112
        read_env_flags = ["profile_client", "profile_server"]
M
MRXLT 已提交
113 114
        self.client_handle_.init_gflags([sys.argv[
            0]] + ["--tryfromenv=" + ",".join(read_env_flags)])
115 116
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
G
guru4elephant 已提交
117
        self.feed_names_to_idx_ = {}
G
guru4elephant 已提交
118 119
        self.fetch_names_to_type_ = {}
        self.fetch_names_to_idx_ = {}
M
MRXLT 已提交
120
        self.lod_tensor_set = set()
M
MRXLT 已提交
121
        self.feed_tensor_len = {}
122 123 124
        for i, var in enumerate(model_conf.feed_var):
            self.feed_names_to_idx_[var.alias_name] = i
            self.feed_types_[var.alias_name] = var.feed_type
M
MRXLT 已提交
125
            self.feed_shapes_[var.alias_name] = var.shape
M
MRXLT 已提交
126

M
MRXLT 已提交
127 128
            if var.is_lod_tensor:
                self.lod_tensor_set.add(var.alias_name)
M
MRXLT 已提交
129 130 131 132 133
            else:
                counter = 1
                for dim in self.feed_shapes_[var.alias_name]:
                    counter *= dim
                self.feed_tensor_len[var.alias_name] = counter
G
guru4elephant 已提交
134

G
guru4elephant 已提交
135 136 137 138
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_names_to_idx_[var.alias_name] = i
            self.fetch_names_to_type_[var.alias_name] = var.fetch_type

G
guru4elephant 已提交
139 140
        return

141
    def add_variant(self, tag, cluster, variant_weight):
B
barrierye 已提交
142 143
        if self.predictor_sdk_ is None:
            self.predictor_sdk_ = SDKConfig()
144 145 146
        self.predictor_sdk_.add_server_variant(tag, cluster,
                                               str(variant_weight))

B
barrierye 已提交
147
    def connect(self, endpoints=None):
G
guru4elephant 已提交
148 149 150
        # check whether current endpoint is available
        # init from client config
        # create predictor here
B
barrierye 已提交
151 152 153 154 155 156 157
        if endpoints is None:
            if self.predictor_sdk_ is None:
                raise SystemExit(
                    "You must set the endpoints parameter or use add_variant function to create a variant."
                )
        else:
            if self.predictor_sdk_ is None:
158
                self.add_variant('default_tag_{}'.format(id(self)), endpoints,
159
                                 100)
B
barrierye 已提交
160 161
            else:
                print(
162
                    "parameter endpoints({}) will not take effect, because you use the add_variant function.".
B
barrierye 已提交
163
                    format(endpoints))
164
        sdk_desc = self.predictor_sdk_.gen_desc()
G
guru4elephant 已提交
165
        print(sdk_desc)
M
MRXLT 已提交
166 167
        self.client_handle_.create_predictor_by_desc(sdk_desc.SerializeToString(
        ))
G
guru4elephant 已提交
168 169 170 171 172 173 174

    def get_feed_names(self):
        return self.feed_names_

    def get_fetch_names(self):
        return self.fetch_names_

M
MRXLT 已提交
175 176 177
    def shape_check(self, feed, key):
        if key in self.lod_tensor_set:
            return
M
MRXLT 已提交
178
        if len(feed[key]) != self.feed_tensor_len[key]:
M
MRXLT 已提交
179 180 181
            raise SystemExit("The shape of feed tensor {} not match.".format(
                key))

182
    def predict(self, feed=None, fetch=None, need_variant_tag=False):
G
guru4elephant 已提交
183 184 185
        if feed is None or fetch is None:
            raise ValueError("You should specify feed and fetch for prediction")

186 187 188 189 190 191
        fetch_list = []
        if isinstance(fetch, str):
            fetch_list = [fetch]
        elif isinstance(fetch, list):
            fetch_list = fetch
        else:
M
MRXLT 已提交
192
            raise ValueError("Fetch only accepts string and list of string")
193 194 195 196 197 198 199

        feed_batch = []
        if isinstance(feed, dict):
            feed_batch.append(feed)
        elif isinstance(feed, list):
            feed_batch = feed
        else:
M
MRXLT 已提交
200
            raise ValueError("Feed only accepts dict and list of dict")
G
guru4elephant 已提交
201

M
MRXLT 已提交
202 203 204 205 206
        int_slot_batch = []
        float_slot_batch = []
        int_feed_names = []
        float_feed_names = []
        fetch_names = []
M
MRXLT 已提交
207
        counter = 0
M
MRXLT 已提交
208
        batch_size = len(feed_batch)
209 210 211 212 213 214 215

        for key in fetch_list:
            if key in self.fetch_names_:
                fetch_names.append(key)

        if len(fetch_names) == 0:
            raise ValueError(
M
MRXLT 已提交
216
                "Fetch names should not be empty or out of saved fetch list.")
217 218
            return {}

G
guru4elephant 已提交
219
        for i, feed_i in enumerate(feed_batch):
M
MRXLT 已提交
220 221
            int_slot = []
            float_slot = []
222
            for key in feed_i:
M
MRXLT 已提交
223
                if key not in self.feed_names_:
M
MRXLT 已提交
224 225
                    raise ValueError("Wrong feed name: {}.".format(key))
                self.shape_check(feed_i, key)
M
MRXLT 已提交
226
                if self.feed_types_[key] == int_type:
G
guru4elephant 已提交
227
                    if i == 0:
M
MRXLT 已提交
228
                        int_feed_names.append(key)
D
dongdaxiang 已提交
229
                    int_slot.append(feed_i[key])
M
MRXLT 已提交
230
                elif self.feed_types_[key] == float_type:
G
guru4elephant 已提交
231
                    if i == 0:
M
MRXLT 已提交
232
                        float_feed_names.append(key)
233
                    float_slot.append(feed_i[key])
M
MRXLT 已提交
234 235
            if len(int_slot) + len(float_slot) == 0:
                raise ValueError("No feed data for predict.")
M
MRXLT 已提交
236 237 238
            int_slot_batch.append(int_slot)
            float_slot_batch.append(float_slot)

M
MRXLT 已提交
239
        result_batch = self.result_handle_
M
MRXLT 已提交
240
        res = self.client_handle_.batch_predict(
M
MRXLT 已提交
241
            float_slot_batch, float_feed_names, int_slot_batch, int_feed_names,
M
MRXLT 已提交
242
            fetch_names, result_batch, self.pid)
M
MRXLT 已提交
243

244 245 246
        if res == -1:
            return None

M
MRXLT 已提交
247
        result_map_batch = []
M
MRXLT 已提交
248 249 250 251 252 253 254 255 256 257 258
        result_map = {}
        for i, name in enumerate(fetch_names):
            if self.fetch_names_to_type_[name] == int_type:
                result_map[name] = result_batch.get_int64_by_name(name)
            elif self.fetch_names_to_type_[name] == float_type:
                result_map[name] = result_batch.get_float_by_name(name)
        for i in range(batch_size):
            single_result = {}
            for key in result_map:
                single_result[key] = result_map[key][i]
            result_map_batch.append(single_result)
M
MRXLT 已提交
259

G
guru4elephant 已提交
260
        if batch_size == 1:
261 262
            return [result_map_batch[0], self.result_handle_.variant_tag()
                    ] if need_variant_tag else result_map_batch[0]
G
guru4elephant 已提交
263
        else:
264 265
            return [result_map_batch, self.result_handle_.variant_tag()
                    ] if need_variant_tag else result_map_batch
266 267 268

    def release(self):
        self.client_handle_.destroy_predictor()
G
guru4elephant 已提交
269
        self.client_handle_ = None