dag.py 23.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import threading
import multiprocessing
import sys
B
barrierye 已提交
18
import copy
19 20 21 22 23 24 25 26
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
import os
import logging
B
barrierye 已提交
27
import collections
28 29

from .operator import Op, RequestOp, ResponseOp, VirtualOp
B
barrierye 已提交
30 31
from .channel import (ThreadChannel, ProcessChannel, ChannelData,
                      ChannelDataEcode, ChannelDataType, ChannelStopError)
B
barriery 已提交
32
from .profiler import TimeProfiler, PerformanceTracer
33
from .util import NameGenerator, ThreadIdGenerator, PipelineProcSyncManager
B
barriery 已提交
34
from .proto import pipeline_service_pb2
35

36
_LOGGER = logging.getLogger(__name__)
37 38 39


class DAGExecutor(object):
40
    def __init__(self, response_op, server_conf, worker_idx):
B
barriery 已提交
41 42 43 44
        build_dag_each_worker = server_conf["build_dag_each_worker"]
        server_worker_num = server_conf["worker_num"]
        dag_conf = server_conf["dag"]

45 46 47 48 49
        self._retry = dag_conf["retry"]
        client_type = dag_conf["client_type"]
        self._server_use_profile = dag_conf["use_profile"]
        channel_size = dag_conf["channel_size"]
        self._is_thread_op = dag_conf["is_thread_op"]
B
barrierye 已提交
50

B
barriery 已提交
51 52 53 54
        tracer_conf = dag_conf["tracer"]
        tracer_interval_s = tracer_conf["interval_s"]

        self.name = "@DAGExecutor"
B
barrierye 已提交
55
        self._profiler = TimeProfiler()
B
barrierye 已提交
56
        self._profiler.enable(True)
B
barrierye 已提交
57

B
barriery 已提交
58 59 60 61
        self._tracer = None
        if tracer_interval_s >= 1:
            self._tracer = PerformanceTracer(
                self._is_thread_op, tracer_interval_s, server_worker_num)
B
barriery 已提交
62

B
barrierye 已提交
63 64
        self._dag = DAG(self.name, response_op, self._server_use_profile,
                        self._is_thread_op, client_type, channel_size,
B
barriery 已提交
65
                        build_dag_each_worker, self._tracer)
B
barrierye 已提交
66 67
        (in_channel, out_channel, pack_rpc_func,
         unpack_rpc_func) = self._dag.build()
68 69 70
        self._dag.start()

        self._set_in_channel(in_channel)
71
        self._set_out_channel(out_channel)
72 73 74
        self._pack_rpc_func = pack_rpc_func
        self._unpack_rpc_func = unpack_rpc_func

B
barriery 已提交
75 76 77
        if self._tracer is not None:
            self._tracer.start()

78 79 80 81 82 83
        # generate id: data_id == request_id == log_id
        base_counter = 0
        gen_id_step = 1
        if build_dag_each_worker:
            base_counter = worker_idx
            gen_id_step = server_worker_num
B
barriery 已提交
84
        self._id_generator = ThreadIdGenerator(
85 86 87
            max_id=1000000000000000000,
            base_counter=base_counter,
            step=gen_id_step)
B
barriery 已提交
88

B
barrierye 已提交
89 90
        self._cv_pool = {}
        self._cv_for_cv_pool = threading.Condition()
91
        self._fetch_buffer = {}
92 93
        self._recive_func = None

B
barrierye 已提交
94 95 96
        self._client_profile_key = "pipeline.profile"
        self._client_profile_value = "1"

97
    def start(self):
98 99
        self._recive_func = threading.Thread(
            target=DAGExecutor._recive_out_channel_func, args=(self, ))
B
barriery 已提交
100
        self._recive_func.daemon = True
101
        self._recive_func.start()
B
barriery 已提交
102
        _LOGGER.debug("[DAG Executor] Start recive thread")
103 104 105 106

    def stop(self):
        self._dag.stop()
        self._dag.join()
B
barriery 已提交
107
        _LOGGER.info("[DAG Executor] Stop")
108 109

    def _get_next_data_id(self):
B
barriery 已提交
110
        data_id = self._id_generator.next()
B
bug fix  
barriery 已提交
111 112 113
        cond_v = threading.Condition()
        with self._cv_for_cv_pool:
            self._cv_pool[data_id] = cond_v
114
            self._fetch_buffer[data_id] = None
B
bug fix  
barriery 已提交
115
        return data_id, cond_v
116 117 118

    def _set_in_channel(self, in_channel):
        if not isinstance(in_channel, (ThreadChannel, ProcessChannel)):
B
barriery 已提交
119 120 121
            _LOGGER.critical("[DAG Executor] Failed to set in_channel: "
                             "in_channel must be Channel type, but get {}".
                             format(type(in_channel)))
122
            os._exit(-1)
123 124 125 126 127
        in_channel.add_producer(self.name)
        self._in_channel = in_channel

    def _set_out_channel(self, out_channel):
        if not isinstance(out_channel, (ThreadChannel, ProcessChannel)):
B
barriery 已提交
128 129 130
            _LOGGER.critical("[DAG Executor] Failed to set out_channel: "
                             "must be Channel type, but get {}".format(
                                 type(out_channel)))
131
            os._exit(-1)
132 133 134 135
        out_channel.add_consumer(self.name)
        self._out_channel = out_channel

    def _recive_out_channel_func(self):
B
barrierye 已提交
136
        cv = None
B
barrierye 已提交
137 138 139 140
        while True:
            try:
                channeldata_dict = self._out_channel.front(self.name)
            except ChannelStopError:
B
barriery 已提交
141
                _LOGGER.info("[DAG Executor] Stop.")
B
barrierye 已提交
142 143 144 145 146 147 148
                with self._cv_for_cv_pool:
                    for data_id, cv in self._cv_pool.items():
                        closed_errror_data = ChannelData(
                            ecode=ChannelDataEcode.CLOSED_ERROR.value,
                            error_info="dag closed.",
                            data_id=data_id)
                        with cv:
149
                            self._fetch_buffer[data_id] = closed_errror_data
B
barrierye 已提交
150 151 152
                            cv.notify_all()
                break

153
            if len(channeldata_dict) != 1:
154
                _LOGGER.critical(
B
barriery 已提交
155 156
                    "[DAG Executor] Failed to fetch result: out_channel "
                    "cannot have multiple input ops")
157 158 159
                os._exit(-1)
            (_, channeldata), = channeldata_dict.items()
            if not isinstance(channeldata, ChannelData):
160
                _LOGGER.critical(
B
barriery 已提交
161 162
                    '[DAG Executor] Failed to fetch result: data in out_channel" \
                    " must be ChannelData type, but get {}'
B
barriery 已提交
163
                    .format(type(channeldata)))
B
barriery 已提交
164
                os._exit(-1)
B
barrierye 已提交
165 166

            data_id = channeldata.id
B
barriery 已提交
167 168
            _LOGGER.debug("(logid={}) [recive thread] Fetched data".format(
                data_id))
B
barrierye 已提交
169
            with self._cv_for_cv_pool:
170 171 172 173
                cond_v = self._cv_pool[data_id]
            with cond_v:
                self._fetch_buffer[data_id] = channeldata
                cond_v.notify_all()
174

B
bug fix  
barriery 已提交
175
    def _get_channeldata_from_fetch_buffer(self, data_id, cond_v):
176 177
        ready_data = None

B
bug fix  
barriery 已提交
178
        with cond_v:
179 180 181 182 183 184 185 186 187 188 189 190 191
            with self._cv_for_cv_pool:
                if self._fetch_buffer[data_id] is not None:
                    # The requested data is already ready
                    ready_data = self._fetch_buffer[data_id]
                    self._cv_pool.pop(data_id)
                    self._fetch_buffer.pop(data_id)
            if ready_data is None:
                # Wait for data ready
                cond_v.wait()
                with self._cv_for_cv_pool:
                    ready_data = self._fetch_buffer[data_id]
                    self._cv_pool.pop(data_id)
                    self._fetch_buffer.pop(data_id)
B
barriery 已提交
192
        _LOGGER.debug("(logid={}) [resp thread] Got data".format(data_id))
193
        return ready_data
194

B
barrierye 已提交
195
    def _pack_channeldata(self, rpc_request, data_id):
196 197 198 199
        dictdata = None
        try:
            dictdata = self._unpack_rpc_func(rpc_request)
        except Exception as e:
B
barriery 已提交
200 201 202 203
            _LOGGER.error(
                "(logid={}) Failed to parse RPC request package: {}"
                .format(data_id, e),
                exc_info=True)
204 205 206
            return ChannelData(
                ecode=ChannelDataEcode.RPC_PACKAGE_ERROR.value,
                error_info="rpc package error: {}".format(e),
B
barrierye 已提交
207
                data_id=data_id)
208
        else:
B
barrierye 已提交
209 210 211 212 213 214 215
            # because unpack_rpc_func is rewritten by user, we need
            # to look for client_profile_key field in rpc_request
            profile_value = None
            for idx, key in enumerate(rpc_request.key):
                if key == self._client_profile_key:
                    profile_value = rpc_request.value[idx]
                    break
B
barriery 已提交
216
            client_need_profile = (profile_value == self._client_profile_value)
B
barriery 已提交
217
            _LOGGER.debug("(logid={}) Need profile in client: {}".format(
B
barriery 已提交
218
                data_id, client_need_profile))
219 220 221
            return ChannelData(
                datatype=ChannelDataType.DICT.value,
                dictdata=dictdata,
B
barrierye 已提交
222
                data_id=data_id,
B
barriery 已提交
223
                client_need_profile=client_need_profile)
224 225

    def call(self, rpc_request):
B
barriery 已提交
226 227
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
B
barriery 已提交
228

B
bug fix  
barriery 已提交
229
        data_id, cond_v = self._get_next_data_id()
B
barriery 已提交
230
        _LOGGER.info("(logid={}) Succ generate id".format(data_id))
B
barriery 已提交
231

B
barriery 已提交
232
        start_call, end_call = None, None
B
barrierye 已提交
233
        if not self._is_thread_op:
B
barriery 已提交
234 235
            start_call = self._profiler.record("call_{}#DAG-{}_0".format(
                data_id, data_id))
B
barrierye 已提交
236
        else:
B
barriery 已提交
237
            start_call = self._profiler.record("call_{}#DAG_0".format(data_id))
B
barrierye 已提交
238

B
barriery 已提交
239
        _LOGGER.debug("(logid={}) Parsing RPC request package".format(data_id))
B
barrierye 已提交
240 241 242
        self._profiler.record("prepack_{}#{}_0".format(data_id, self.name))
        req_channeldata = self._pack_channeldata(rpc_request, data_id)
        self._profiler.record("prepack_{}#{}_1".format(data_id, self.name))
243 244 245

        resp_channeldata = None
        for i in range(self._retry):
B
barriery 已提交
246 247
            _LOGGER.debug("(logid={}) Pushing data into Graph engine".format(
                data_id))
B
barrierye 已提交
248 249 250
            try:
                self._in_channel.push(req_channeldata, self.name)
            except ChannelStopError:
B
barriery 已提交
251
                _LOGGER.debug("[DAG Executor] Stop")
B
bug fix  
barriery 已提交
252 253
                with self._cv_for_cv_pool:
                    self._cv_pool.pop(data_id)
B
barrierye 已提交
254 255 256 257 258
                return self._pack_for_rpc_resp(
                    ChannelData(
                        ecode=ChannelDataEcode.CLOSED_ERROR.value,
                        error_info="dag closed.",
                        data_id=data_id))
259

B
barriery 已提交
260
            _LOGGER.debug("(logid={}) Wait for Graph engine...".format(data_id))
B
bug fix  
barriery 已提交
261 262
            resp_channeldata = self._get_channeldata_from_fetch_buffer(data_id,
                                                                       cond_v)
263 264

            if resp_channeldata.ecode == ChannelDataEcode.OK.value:
B
barriery 已提交
265
                _LOGGER.info("(logid={}) Succ predict".format(data_id))
266
                break
B
barriery 已提交
267
            else:
B
barriery 已提交
268 269
                _LOGGER.error("(logid={}) Failed to predict: {}"
                              .format(data_id, resp_channeldata.error_info))
B
barriery 已提交
270 271 272
                if resp_channeldata.ecode != ChannelDataEcode.TIMEOUT.value:
                    break

273
            if i + 1 < self._retry:
B
barriery 已提交
274 275
                _LOGGER.warning("(logid={}) DAGExecutor retry({}/{})".format(
                    data_id, i + 1, self._retry))
276

B
barriery 已提交
277
        _LOGGER.debug("(logid={}) Packing RPC response package".format(data_id))
B
barrierye 已提交
278
        self._profiler.record("postpack_{}#{}_0".format(data_id, self.name))
279
        rpc_resp = self._pack_for_rpc_resp(resp_channeldata)
B
barrierye 已提交
280
        self._profiler.record("postpack_{}#{}_1".format(data_id, self.name))
B
barrierye 已提交
281
        if not self._is_thread_op:
B
barriery 已提交
282 283
            end_call = self._profiler.record("call_{}#DAG-{}_1".format(data_id,
                                                                       data_id))
B
barrierye 已提交
284
        else:
B
barriery 已提交
285
            end_call = self._profiler.record("call_{}#DAG_1".format(data_id))
B
barriery 已提交
286 287

        if self._tracer is not None:
B
barrierye 已提交
288
            trace_buffer.put({
B
barrierye 已提交
289 290 291 292 293 294 295
                "name": "DAG",
                "id": data_id,
                "succ": resp_channeldata.ecode == ChannelDataEcode.OK.value,
                "actions": {
                    "call_{}".format(data_id): end_call - start_call,
                },
            })
B
barrierye 已提交
296 297 298 299 300 301 302 303

        profile_str = self._profiler.gen_profile_str()
        if self._server_use_profile:
            sys.stderr.write(profile_str)

        # add profile info into rpc_resp
        profile_value = ""
        if resp_channeldata.client_need_profile:
B
barrierye 已提交
304 305 306
            profile_set = resp_channeldata.profile_data_set
            profile_set.add(profile_str)
            profile_value = "".join(list(profile_set))
B
barrierye 已提交
307 308 309
        rpc_resp.key.append(self._client_profile_key)
        rpc_resp.value.append(profile_value)

310 311 312
        return rpc_resp

    def _pack_for_rpc_resp(self, channeldata):
B
barriery 已提交
313 314 315 316 317 318 319 320 321 322 323
        try:
            return self._pack_rpc_func(channeldata)
        except Exception as e:
            _LOGGER.error(
                "(logid={}) Failed to pack RPC response package: {}"
                .format(channeldata.id, e),
                exc_info=True)
            resp = pipeline_service_pb2.Response()
            resp.ecode = ChannelDataEcode.RPC_PACKAGE_ERROR.value
            resp.error_info = "rpc package error: {}".format(e)
            return resp
324 325 326


class DAG(object):
B
barrierye 已提交
327
    def __init__(self, request_name, response_op, use_profile, is_thread_op,
B
barriery 已提交
328
                 client_type, channel_size, build_dag_each_worker, tracer):
B
barrierye 已提交
329
        self._request_name = request_name
330
        self._response_op = response_op
B
barrierye 已提交
331
        self._use_profile = use_profile
B
barrierye 已提交
332
        self._is_thread_op = is_thread_op
333 334
        self._channel_size = channel_size
        self._client_type = client_type
B
barriery 已提交
335
        self._build_dag_each_worker = build_dag_each_worker
B
barriery 已提交
336
        self._tracer = tracer
B
barrierye 已提交
337
        if not self._is_thread_op:
338
            self._manager = PipelineProcSyncManager()
B
barriery 已提交
339
        _LOGGER.info("[DAG] Succ init")
340 341 342

    def get_use_ops(self, response_op):
        unique_names = set()
343
        used_ops = set()
344 345 346 347 348 349 350 351 352 353
        succ_ops_of_use_op = {}  # {op_name: succ_ops}
        que = Queue.Queue()
        que.put(response_op)
        while que.qsize() != 0:
            op = que.get()
            for pred_op in op.get_input_ops():
                if pred_op.name not in succ_ops_of_use_op:
                    succ_ops_of_use_op[pred_op.name] = []
                if op != response_op:
                    succ_ops_of_use_op[pred_op.name].append(op)
354
                if pred_op not in used_ops:
355
                    que.put(pred_op)
356
                    used_ops.add(pred_op)
357 358
                    # check the name of op is globally unique
                    if pred_op.name in unique_names:
B
barriery 已提交
359 360
                        _LOGGER.critical("Failed to get used Ops: the"
                                         " name of Op must be unique: {}".
361 362
                                         format(pred_op.name))
                        os._exit(-1)
363
                    unique_names.add(pred_op.name)
364
        return used_ops, succ_ops_of_use_op
365 366 367

    def _gen_channel(self, name_gen):
        channel = None
B
barrierye 已提交
368
        if self._is_thread_op:
369 370 371 372 373
            channel = ThreadChannel(
                name=name_gen.next(), maxsize=self._channel_size)
        else:
            channel = ProcessChannel(
                self._manager, name=name_gen.next(), maxsize=self._channel_size)
B
barriery 已提交
374
        _LOGGER.debug("[DAG] Generate channel: {}".format(channel.name))
375 376 377
        return channel

    def _gen_virtual_op(self, name_gen):
B
barriery 已提交
378
        vir_op = VirtualOp(name=name_gen.next())
B
barriery 已提交
379
        _LOGGER.debug("[DAG] Generate virtual_op: {}".format(vir_op.name))
B
barriery 已提交
380
        return vir_op
381 382 383 384 385 386 387 388 389

    def _topo_sort(self, used_ops, response_op, out_degree_ops):
        out_degree_num = {
            name: len(ops)
            for name, ops in out_degree_ops.items()
        }
        que_idx = 0  # scroll queue 
        ques = [Queue.Queue() for _ in range(2)]
        zero_indegree_num = 0
390
        for op in used_ops:
391 392 393
            if len(op.get_input_ops()) == 0:
                zero_indegree_num += 1
        if zero_indegree_num != 1:
B
barriery 已提交
394 395
            _LOGGER.critical("Failed to topo sort: DAG contains "
                             "multiple RequestOps")
396
            os._exit(-1)
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
        last_op = response_op.get_input_ops()[0]
        ques[que_idx].put(last_op)

        # topo sort to get dag_views
        dag_views = []
        sorted_op_num = 0
        while True:
            que = ques[que_idx]
            next_que = ques[(que_idx + 1) % 2]
            dag_view = []
            while que.qsize() != 0:
                op = que.get()
                dag_view.append(op)
                sorted_op_num += 1
                for pred_op in op.get_input_ops():
                    out_degree_num[pred_op.name] -= 1
                    if out_degree_num[pred_op.name] == 0:
                        next_que.put(pred_op)
            dag_views.append(dag_view)
            if next_que.qsize() == 0:
                break
            que_idx = (que_idx + 1) % 2
419
        if sorted_op_num < len(used_ops):
B
barriery 已提交
420
            _LOGGER.critical("Failed to topo sort: not legal DAG")
421
            os._exit(-1)
422 423 424

        return dag_views, last_op

425
    def _build_dag(self, response_op):
426
        if response_op is None:
B
barriery 已提交
427 428
            _LOGGER.critical("Failed to build DAG: ResponseOp"
                             " has not been set.")
429
            os._exit(-1)
430
        used_ops, out_degree_ops = self.get_use_ops(response_op)
431
        if not self._build_dag_each_worker:
B
barrierye 已提交
432 433 434 435 436
            _LOGGER.info("================= USED OP =================")
            for op in used_ops:
                if op.name != self._request_name:
                    _LOGGER.info(op.name)
            _LOGGER.info("-------------------------------------------")
437
        if len(used_ops) <= 1:
438
            _LOGGER.critical(
B
barriery 已提交
439 440
                "Failed to build DAG: besides RequestOp and ResponseOp, "
                "there should be at least one Op in DAG.")
441
            os._exit(-1)
B
barriery 已提交
442 443
        if self._build_dag_each_worker:
            _LOGGER.info("Because `build_dag_each_worker` mode is used, "
B
barriery 已提交
444 445
                         "Auto-batching is set to the default config: "
                         "batch_size=1, auto_batching_timeout=None")
B
barriery 已提交
446 447
            for op in used_ops:
                op.use_default_auto_batching_config()
448 449 450

        dag_views, last_op = self._topo_sort(used_ops, response_op,
                                             out_degree_ops)
B
barrierye 已提交
451
        dag_views = list(reversed(dag_views))
452 453
        if not self._build_dag_each_worker:
            _LOGGER.debug("================== DAG ====================")
B
barrierye 已提交
454
            for idx, view in enumerate(dag_views):
455
                _LOGGER.debug("(VIEW {})".format(idx))
B
barrierye 已提交
456
                for op in view:
457
                    _LOGGER.debug("  [{}]".format(op.name))
B
barrierye 已提交
458
                    for out_op in out_degree_ops[op.name]:
459 460
                        _LOGGER.debug("    - {}".format(out_op.name))
            _LOGGER.debug("-------------------------------------------")
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

        # create channels and virtual ops
        virtual_op_name_gen = NameGenerator("vir")
        channel_name_gen = NameGenerator("chl")
        virtual_ops = []
        channels = []
        input_channel = None
        actual_view = None
        for v_idx, view in enumerate(dag_views):
            if v_idx + 1 >= len(dag_views):
                break
            next_view = dag_views[v_idx + 1]
            if actual_view is None:
                actual_view = view
            actual_next_view = []
            pred_op_of_next_view_op = {}
            for op in actual_view:
                # find actual succ op in next view and create virtual op
                for succ_op in out_degree_ops[op.name]:
                    if succ_op in next_view:
                        if succ_op not in actual_next_view:
                            actual_next_view.append(succ_op)
                        if succ_op.name not in pred_op_of_next_view_op:
                            pred_op_of_next_view_op[succ_op.name] = []
                        pred_op_of_next_view_op[succ_op.name].append(op)
                    else:
                        # create virtual op
                        virtual_op = self._gen_virtual_op(virtual_op_name_gen)
                        virtual_ops.append(virtual_op)
                        out_degree_ops[virtual_op.name] = [succ_op]
                        actual_next_view.append(virtual_op)
                        pred_op_of_next_view_op[virtual_op.name] = [op]
                        virtual_op.add_virtual_pred_op(op)
            actual_view = actual_next_view
            # create channel
            processed_op = set()
            for o_idx, op in enumerate(actual_next_view):
                if op.name in processed_op:
                    continue
                channel = self._gen_channel(channel_name_gen)
                channels.append(channel)
                op.add_input_channel(channel)
                pred_ops = pred_op_of_next_view_op[op.name]
                if v_idx == 0:
                    input_channel = channel
                else:
                    # if pred_op is virtual op, it will use ancestors as producers to channel
                    for pred_op in pred_ops:
                        pred_op.add_output_channel(channel)
                processed_op.add(op.name)
                # find same input op to combine channel
                for other_op in actual_next_view[o_idx + 1:]:
                    if other_op.name in processed_op:
                        continue
                    other_pred_ops = pred_op_of_next_view_op[other_op.name]
                    if len(other_pred_ops) != len(pred_ops):
                        continue
                    same_flag = True
                    for pred_op in pred_ops:
                        if pred_op not in other_pred_ops:
                            same_flag = False
                            break
                    if same_flag:
                        other_op.add_input_channel(channel)
                        processed_op.add(other_op.name)
        output_channel = self._gen_channel(channel_name_gen)
        channels.append(output_channel)
        last_op.add_output_channel(output_channel)

        pack_func, unpack_func = None, None
        pack_func = response_op.pack_response_package

        actual_ops = virtual_ops
534
        for op in used_ops:
535 536 537 538 539 540
            if len(op.get_input_ops()) == 0:
                unpack_func = op.unpack_request_package
                continue
            actual_ops.append(op)

        for c in channels:
B
barriery 已提交
541
            _LOGGER.debug("Channel({}):\n\t- producers: {}\n\t- consumers: {}"
B
barriery 已提交
542
                          .format(c.name, c.get_producers(), c.get_consumers()))
543 544 545 546

        return (actual_ops, channels, input_channel, output_channel, pack_func,
                unpack_func)

B
barriery 已提交
547 548 549
    def get_channels(self):
        return self._channels

550 551
    def build(self):
        (actual_ops, channels, input_channel, output_channel, pack_func,
552
         unpack_func) = self._build_dag(self._response_op)
B
barriery 已提交
553
        _LOGGER.info("[DAG] Succ build DAG")
554 555 556 557 558 559 560 561

        self._actual_ops = actual_ops
        self._channels = channels
        self._input_channel = input_channel
        self._output_channel = output_channel
        self._pack_func = pack_func
        self._unpack_func = unpack_func

B
barriery 已提交
562 563
        self._tracer.set_channels(self._channels)

564 565 566 567 568
        return self._input_channel, self._output_channel, self._pack_func, self._unpack_func

    def start(self):
        self._threads_or_proces = []
        for op in self._actual_ops:
B
barrierye 已提交
569
            op.use_profiler(self._use_profile)
B
barriery 已提交
570
            op.set_tracer(self._tracer)
B
barrierye 已提交
571
            if self._is_thread_op:
572
                self._threads_or_proces.extend(
573 574
                    op.start_with_thread(self._client_type))
            else:
575
                self._threads_or_proces.extend(
576
                    op.start_with_process(self._client_type))
B
barriery 已提交
577 578
        _LOGGER.info("[DAG] start")

579 580 581 582 583 584 585 586 587 588
        # not join yet
        return self._threads_or_proces

    def join(self):
        for x in self._threads_or_proces:
            x.join()

    def stop(self):
        for chl in self._channels:
            chl.stop()
589 590 591
        for op in self._actual_ops:
            op.clean_input_channel()
            op.clean_output_channels()