dag.py 23.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=doc-string-missing
import threading
import multiprocessing
import sys
B
barrierye 已提交
18
import copy
19 20 21 22 23 24 25 26 27 28
if sys.version_info.major == 2:
    import Queue
elif sys.version_info.major == 3:
    import queue as Queue
else:
    raise Exception("Error Python version")
import os
import logging

from .operator import Op, RequestOp, ResponseOp, VirtualOp
B
barrierye 已提交
29 30
from .channel import (ThreadChannel, ProcessChannel, ChannelData,
                      ChannelDataEcode, ChannelDataType, ChannelStopError)
B
barriery 已提交
31
from .profiler import TimeProfiler, PerformanceTracer
32
from .util import NameGenerator, ThreadIdGenerator, PipelineProcSyncManager
B
barriery 已提交
33
from .proto import pipeline_service_pb2
34

35
_LOGGER = logging.getLogger(__name__)
36 37 38


class DAGExecutor(object):
B
barriery 已提交
39 40 41 42 43
    def __init__(self, response_op, server_conf):
        build_dag_each_worker = server_conf["build_dag_each_worker"]
        server_worker_num = server_conf["worker_num"]
        dag_conf = server_conf["dag"]

44 45 46 47 48
        self._retry = dag_conf["retry"]
        client_type = dag_conf["client_type"]
        self._server_use_profile = dag_conf["use_profile"]
        channel_size = dag_conf["channel_size"]
        self._is_thread_op = dag_conf["is_thread_op"]
B
barrierye 已提交
49

B
barriery 已提交
50 51 52 53
        tracer_conf = dag_conf["tracer"]
        tracer_interval_s = tracer_conf["interval_s"]

        self.name = "@DAGExecutor"
B
barrierye 已提交
54
        self._profiler = TimeProfiler()
B
barrierye 已提交
55
        self._profiler.enable(True)
B
barrierye 已提交
56

B
barriery 已提交
57 58 59 60
        self._tracer = None
        if tracer_interval_s >= 1:
            self._tracer = PerformanceTracer(
                self._is_thread_op, tracer_interval_s, server_worker_num)
B
barriery 已提交
61

B
barrierye 已提交
62 63
        self._dag = DAG(self.name, response_op, self._server_use_profile,
                        self._is_thread_op, client_type, channel_size,
B
barriery 已提交
64
                        build_dag_each_worker, self._tracer)
B
barrierye 已提交
65 66
        (in_channel, out_channel, pack_rpc_func,
         unpack_rpc_func) = self._dag.build()
67 68 69
        self._dag.start()

        self._set_in_channel(in_channel)
70
        self._set_out_channel(out_channel)
71 72 73
        self._pack_rpc_func = pack_rpc_func
        self._unpack_rpc_func = unpack_rpc_func

B
barriery 已提交
74 75 76
        if self._tracer is not None:
            self._tracer.start()

B
barriery 已提交
77 78 79
        self._id_generator = ThreadIdGenerator(
            max_id=1000000000000000000, base_counter=0, step=1)

B
barrierye 已提交
80 81
        self._cv_pool = {}
        self._cv_for_cv_pool = threading.Condition()
82
        self._fetch_buffer = {}
83 84
        self._recive_func = None

B
barrierye 已提交
85 86 87
        self._client_profile_key = "pipeline.profile"
        self._client_profile_value = "1"

88
    def start(self):
89 90
        self._recive_func = threading.Thread(
            target=DAGExecutor._recive_out_channel_func, args=(self, ))
B
barriery 已提交
91
        self._recive_func.daemon = True
92
        self._recive_func.start()
B
barriery 已提交
93
        _LOGGER.debug("[DAG Executor] Start recive thread")
94 95 96 97

    def stop(self):
        self._dag.stop()
        self._dag.join()
B
barriery 已提交
98
        _LOGGER.info("[DAG Executor] Stop")
99 100

    def _get_next_data_id(self):
B
barriery 已提交
101
        data_id = self._id_generator.next()
B
bug fix  
barriery 已提交
102 103 104
        cond_v = threading.Condition()
        with self._cv_for_cv_pool:
            self._cv_pool[data_id] = cond_v
105
            self._fetch_buffer[data_id] = None
B
bug fix  
barriery 已提交
106
        return data_id, cond_v
107 108 109

    def _set_in_channel(self, in_channel):
        if not isinstance(in_channel, (ThreadChannel, ProcessChannel)):
B
barriery 已提交
110 111 112
            _LOGGER.critical("[DAG Executor] Failed to set in_channel: "
                             "in_channel must be Channel type, but get {}".
                             format(type(in_channel)))
113
            os._exit(-1)
114 115 116 117 118
        in_channel.add_producer(self.name)
        self._in_channel = in_channel

    def _set_out_channel(self, out_channel):
        if not isinstance(out_channel, (ThreadChannel, ProcessChannel)):
B
barriery 已提交
119 120 121
            _LOGGER.critical("[DAG Executor] Failed to set out_channel: "
                             "must be Channel type, but get {}".format(
                                 type(out_channel)))
122
            os._exit(-1)
123 124 125 126
        out_channel.add_consumer(self.name)
        self._out_channel = out_channel

    def _recive_out_channel_func(self):
B
barrierye 已提交
127
        cv = None
B
barrierye 已提交
128 129 130 131
        while True:
            try:
                channeldata_dict = self._out_channel.front(self.name)
            except ChannelStopError:
B
barriery 已提交
132
                _LOGGER.info("[DAG Executor] Stop.")
B
barrierye 已提交
133 134 135 136 137 138 139
                with self._cv_for_cv_pool:
                    for data_id, cv in self._cv_pool.items():
                        closed_errror_data = ChannelData(
                            ecode=ChannelDataEcode.CLOSED_ERROR.value,
                            error_info="dag closed.",
                            data_id=data_id)
                        with cv:
140
                            self._fetch_buffer[data_id] = closed_errror_data
B
barrierye 已提交
141 142 143
                            cv.notify_all()
                break

144
            if len(channeldata_dict) != 1:
145
                _LOGGER.critical(
B
barriery 已提交
146 147
                    "[DAG Executor] Failed to fetch result: out_channel "
                    "cannot have multiple input ops")
148 149 150
                os._exit(-1)
            (_, channeldata), = channeldata_dict.items()
            if not isinstance(channeldata, ChannelData):
151
                _LOGGER.critical(
B
barriery 已提交
152 153
                    '[DAG Executor] Failed to fetch result: data in out_channel" \
                    " must be ChannelData type, but get {}'
B
barriery 已提交
154
                    .format(type(channeldata)))
B
barriery 已提交
155
                os._exit(-1)
B
barrierye 已提交
156 157

            data_id = channeldata.id
B
barriery 已提交
158 159
            _LOGGER.debug("(logid={}) [recive thread] Fetched data".format(
                data_id))
B
barrierye 已提交
160
            with self._cv_for_cv_pool:
161 162 163 164
                cond_v = self._cv_pool[data_id]
            with cond_v:
                self._fetch_buffer[data_id] = channeldata
                cond_v.notify_all()
165

B
bug fix  
barriery 已提交
166
    def _get_channeldata_from_fetch_buffer(self, data_id, cond_v):
167 168
        ready_data = None

B
bug fix  
barriery 已提交
169
        with cond_v:
170 171 172 173 174 175 176 177 178 179 180 181 182
            with self._cv_for_cv_pool:
                if self._fetch_buffer[data_id] is not None:
                    # The requested data is already ready
                    ready_data = self._fetch_buffer[data_id]
                    self._cv_pool.pop(data_id)
                    self._fetch_buffer.pop(data_id)
            if ready_data is None:
                # Wait for data ready
                cond_v.wait()
                with self._cv_for_cv_pool:
                    ready_data = self._fetch_buffer[data_id]
                    self._cv_pool.pop(data_id)
                    self._fetch_buffer.pop(data_id)
B
barriery 已提交
183
        _LOGGER.debug("(logid={}) [resp thread] Got data".format(data_id))
184
        return ready_data
185

B
barrierye 已提交
186
    def _pack_channeldata(self, rpc_request, data_id):
187 188 189 190
        dictdata = None
        try:
            dictdata = self._unpack_rpc_func(rpc_request)
        except Exception as e:
B
barriery 已提交
191 192 193 194
            _LOGGER.error(
                "(logid={}) Failed to parse RPC request package: {}"
                .format(data_id, e),
                exc_info=True)
195 196 197
            return ChannelData(
                ecode=ChannelDataEcode.RPC_PACKAGE_ERROR.value,
                error_info="rpc package error: {}".format(e),
B
barrierye 已提交
198
                data_id=data_id)
199
        else:
B
barrierye 已提交
200 201 202 203 204 205 206
            # because unpack_rpc_func is rewritten by user, we need
            # to look for client_profile_key field in rpc_request
            profile_value = None
            for idx, key in enumerate(rpc_request.key):
                if key == self._client_profile_key:
                    profile_value = rpc_request.value[idx]
                    break
B
barriery 已提交
207
            client_need_profile = (profile_value == self._client_profile_value)
B
barriery 已提交
208
            _LOGGER.debug("(logid={}) Need profile in client: {}".format(
B
barriery 已提交
209
                data_id, client_need_profile))
210 211 212
            return ChannelData(
                datatype=ChannelDataType.DICT.value,
                dictdata=dictdata,
B
barrierye 已提交
213
                data_id=data_id,
B
barriery 已提交
214
                client_need_profile=client_need_profile)
215 216

    def call(self, rpc_request):
B
barriery 已提交
217 218
        if self._tracer is not None:
            trace_buffer = self._tracer.data_buffer()
B
barriery 已提交
219

B
bug fix  
barriery 已提交
220
        data_id, cond_v = self._get_next_data_id()
B
barriery 已提交
221
        _LOGGER.info("(logid={}) Succ generate id".format(data_id))
B
barriery 已提交
222

B
barriery 已提交
223
        start_call, end_call = None, None
B
barrierye 已提交
224
        if not self._is_thread_op:
B
barriery 已提交
225 226
            start_call = self._profiler.record("call_{}#DAG-{}_0".format(
                data_id, data_id))
B
barrierye 已提交
227
        else:
B
barriery 已提交
228
            start_call = self._profiler.record("call_{}#DAG_0".format(data_id))
B
barrierye 已提交
229

B
barriery 已提交
230
        _LOGGER.debug("(logid={}) Parsing RPC request package".format(data_id))
B
barrierye 已提交
231 232 233
        self._profiler.record("prepack_{}#{}_0".format(data_id, self.name))
        req_channeldata = self._pack_channeldata(rpc_request, data_id)
        self._profiler.record("prepack_{}#{}_1".format(data_id, self.name))
234 235 236

        resp_channeldata = None
        for i in range(self._retry):
B
barriery 已提交
237 238
            _LOGGER.debug("(logid={}) Pushing data into Graph engine".format(
                data_id))
B
barrierye 已提交
239 240 241
            try:
                self._in_channel.push(req_channeldata, self.name)
            except ChannelStopError:
B
barriery 已提交
242
                _LOGGER.debug("[DAG Executor] Stop")
B
bug fix  
barriery 已提交
243 244
                with self._cv_for_cv_pool:
                    self._cv_pool.pop(data_id)
B
barrierye 已提交
245 246 247 248 249
                return self._pack_for_rpc_resp(
                    ChannelData(
                        ecode=ChannelDataEcode.CLOSED_ERROR.value,
                        error_info="dag closed.",
                        data_id=data_id))
250

B
barriery 已提交
251
            _LOGGER.debug("(logid={}) Wait for Graph engine...".format(data_id))
B
bug fix  
barriery 已提交
252 253
            resp_channeldata = self._get_channeldata_from_fetch_buffer(data_id,
                                                                       cond_v)
254 255

            if resp_channeldata.ecode == ChannelDataEcode.OK.value:
B
barriery 已提交
256
                _LOGGER.info("(logid={}) Succ predict".format(data_id))
257
                break
B
barriery 已提交
258
            else:
B
barriery 已提交
259 260
                _LOGGER.error("(logid={}) Failed to predict: {}"
                              .format(data_id, resp_channeldata.error_info))
B
barriery 已提交
261 262 263
                if resp_channeldata.ecode != ChannelDataEcode.TIMEOUT.value:
                    break

264
            if i + 1 < self._retry:
B
barriery 已提交
265 266
                _LOGGER.warning("(logid={}) DAGExecutor retry({}/{})".format(
                    data_id, i + 1, self._retry))
267

B
barriery 已提交
268
        _LOGGER.debug("(logid={}) Packing RPC response package".format(data_id))
B
barrierye 已提交
269
        self._profiler.record("postpack_{}#{}_0".format(data_id, self.name))
270
        rpc_resp = self._pack_for_rpc_resp(resp_channeldata)
B
barrierye 已提交
271
        self._profiler.record("postpack_{}#{}_1".format(data_id, self.name))
B
barrierye 已提交
272
        if not self._is_thread_op:
B
barriery 已提交
273 274
            end_call = self._profiler.record("call_{}#DAG-{}_1".format(data_id,
                                                                       data_id))
B
barrierye 已提交
275
        else:
B
barriery 已提交
276
            end_call = self._profiler.record("call_{}#DAG_1".format(data_id))
B
barriery 已提交
277 278 279 280 281 282 283 284

        if self._tracer is not None:
            if resp_channeldata.ecode == ChannelDataEcode.OK.value:
                trace_buffer.put(("DAG", "call_{}".format(data_id), True,
                                  end_call - start_call))
            else:
                trace_buffer.put(("DAG", "call_{}".format(data_id), False,
                                  end_call - start_call))
B
barrierye 已提交
285 286 287 288 289 290 291 292

        profile_str = self._profiler.gen_profile_str()
        if self._server_use_profile:
            sys.stderr.write(profile_str)

        # add profile info into rpc_resp
        profile_value = ""
        if resp_channeldata.client_need_profile:
B
barrierye 已提交
293 294 295
            profile_set = resp_channeldata.profile_data_set
            profile_set.add(profile_str)
            profile_value = "".join(list(profile_set))
B
barrierye 已提交
296 297 298
        rpc_resp.key.append(self._client_profile_key)
        rpc_resp.value.append(profile_value)

299 300 301
        return rpc_resp

    def _pack_for_rpc_resp(self, channeldata):
B
barriery 已提交
302 303 304 305 306 307 308 309 310 311 312
        try:
            return self._pack_rpc_func(channeldata)
        except Exception as e:
            _LOGGER.error(
                "(logid={}) Failed to pack RPC response package: {}"
                .format(channeldata.id, e),
                exc_info=True)
            resp = pipeline_service_pb2.Response()
            resp.ecode = ChannelDataEcode.RPC_PACKAGE_ERROR.value
            resp.error_info = "rpc package error: {}".format(e)
            return resp
313 314 315


class DAG(object):
B
barrierye 已提交
316
    def __init__(self, request_name, response_op, use_profile, is_thread_op,
B
barriery 已提交
317
                 client_type, channel_size, build_dag_each_worker, tracer):
B
barrierye 已提交
318
        self._request_name = request_name
319
        self._response_op = response_op
B
barrierye 已提交
320
        self._use_profile = use_profile
B
barrierye 已提交
321
        self._is_thread_op = is_thread_op
322 323
        self._channel_size = channel_size
        self._client_type = client_type
B
barriery 已提交
324
        self._build_dag_each_worker = build_dag_each_worker
B
barriery 已提交
325
        self._tracer = tracer
B
barrierye 已提交
326
        if not self._is_thread_op:
327
            self._manager = PipelineProcSyncManager()
B
barriery 已提交
328
        _LOGGER.info("[DAG] Succ init")
329 330 331

    def get_use_ops(self, response_op):
        unique_names = set()
332
        used_ops = set()
333 334 335 336 337 338 339 340 341 342
        succ_ops_of_use_op = {}  # {op_name: succ_ops}
        que = Queue.Queue()
        que.put(response_op)
        while que.qsize() != 0:
            op = que.get()
            for pred_op in op.get_input_ops():
                if pred_op.name not in succ_ops_of_use_op:
                    succ_ops_of_use_op[pred_op.name] = []
                if op != response_op:
                    succ_ops_of_use_op[pred_op.name].append(op)
343
                if pred_op not in used_ops:
344
                    que.put(pred_op)
345
                    used_ops.add(pred_op)
346 347
                    # check the name of op is globally unique
                    if pred_op.name in unique_names:
B
barriery 已提交
348 349
                        _LOGGER.critical("Failed to get used Ops: the"
                                         " name of Op must be unique: {}".
350 351
                                         format(pred_op.name))
                        os._exit(-1)
352
                    unique_names.add(pred_op.name)
353
        return used_ops, succ_ops_of_use_op
354 355 356

    def _gen_channel(self, name_gen):
        channel = None
B
barrierye 已提交
357
        if self._is_thread_op:
358 359 360 361 362
            channel = ThreadChannel(
                name=name_gen.next(), maxsize=self._channel_size)
        else:
            channel = ProcessChannel(
                self._manager, name=name_gen.next(), maxsize=self._channel_size)
B
barriery 已提交
363
        _LOGGER.debug("[DAG] Generate channel: {}".format(channel.name))
364 365 366
        return channel

    def _gen_virtual_op(self, name_gen):
B
barriery 已提交
367
        vir_op = VirtualOp(name=name_gen.next())
B
barriery 已提交
368
        _LOGGER.debug("[DAG] Generate virtual_op: {}".format(vir_op.name))
B
barriery 已提交
369
        return vir_op
370 371 372 373 374 375 376 377 378

    def _topo_sort(self, used_ops, response_op, out_degree_ops):
        out_degree_num = {
            name: len(ops)
            for name, ops in out_degree_ops.items()
        }
        que_idx = 0  # scroll queue 
        ques = [Queue.Queue() for _ in range(2)]
        zero_indegree_num = 0
379
        for op in used_ops:
380 381 382
            if len(op.get_input_ops()) == 0:
                zero_indegree_num += 1
        if zero_indegree_num != 1:
B
barriery 已提交
383 384
            _LOGGER.critical("Failed to topo sort: DAG contains "
                             "multiple RequestOps")
385
            os._exit(-1)
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        last_op = response_op.get_input_ops()[0]
        ques[que_idx].put(last_op)

        # topo sort to get dag_views
        dag_views = []
        sorted_op_num = 0
        while True:
            que = ques[que_idx]
            next_que = ques[(que_idx + 1) % 2]
            dag_view = []
            while que.qsize() != 0:
                op = que.get()
                dag_view.append(op)
                sorted_op_num += 1
                for pred_op in op.get_input_ops():
                    out_degree_num[pred_op.name] -= 1
                    if out_degree_num[pred_op.name] == 0:
                        next_que.put(pred_op)
            dag_views.append(dag_view)
            if next_que.qsize() == 0:
                break
            que_idx = (que_idx + 1) % 2
408
        if sorted_op_num < len(used_ops):
B
barriery 已提交
409
            _LOGGER.critical("Failed to topo sort: not legal DAG")
410
            os._exit(-1)
411 412 413

        return dag_views, last_op

414
    def _build_dag(self, response_op):
415
        if response_op is None:
B
barriery 已提交
416 417
            _LOGGER.critical("Failed to build DAG: ResponseOp"
                             " has not been set.")
418
            os._exit(-1)
419
        used_ops, out_degree_ops = self.get_use_ops(response_op)
420
        if not self._build_dag_each_worker:
B
barrierye 已提交
421 422 423 424 425
            _LOGGER.info("================= USED OP =================")
            for op in used_ops:
                if op.name != self._request_name:
                    _LOGGER.info(op.name)
            _LOGGER.info("-------------------------------------------")
426
        if len(used_ops) <= 1:
427
            _LOGGER.critical(
B
barriery 已提交
428 429
                "Failed to build DAG: besides RequestOp and ResponseOp, "
                "there should be at least one Op in DAG.")
430
            os._exit(-1)
B
barriery 已提交
431 432
        if self._build_dag_each_worker:
            _LOGGER.info("Because `build_dag_each_worker` mode is used, "
B
barriery 已提交
433 434
                         "Auto-batching is set to the default config: "
                         "batch_size=1, auto_batching_timeout=None")
B
barriery 已提交
435 436
            for op in used_ops:
                op.use_default_auto_batching_config()
437 438 439

        dag_views, last_op = self._topo_sort(used_ops, response_op,
                                             out_degree_ops)
B
barrierye 已提交
440
        dag_views = list(reversed(dag_views))
441 442
        if not self._build_dag_each_worker:
            _LOGGER.debug("================== DAG ====================")
B
barrierye 已提交
443
            for idx, view in enumerate(dag_views):
444
                _LOGGER.debug("(VIEW {})".format(idx))
B
barrierye 已提交
445
                for op in view:
446
                    _LOGGER.debug("  [{}]".format(op.name))
B
barrierye 已提交
447
                    for out_op in out_degree_ops[op.name]:
448 449
                        _LOGGER.debug("    - {}".format(out_op.name))
            _LOGGER.debug("-------------------------------------------")
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

        # create channels and virtual ops
        virtual_op_name_gen = NameGenerator("vir")
        channel_name_gen = NameGenerator("chl")
        virtual_ops = []
        channels = []
        input_channel = None
        actual_view = None
        for v_idx, view in enumerate(dag_views):
            if v_idx + 1 >= len(dag_views):
                break
            next_view = dag_views[v_idx + 1]
            if actual_view is None:
                actual_view = view
            actual_next_view = []
            pred_op_of_next_view_op = {}
            for op in actual_view:
                # find actual succ op in next view and create virtual op
                for succ_op in out_degree_ops[op.name]:
                    if succ_op in next_view:
                        if succ_op not in actual_next_view:
                            actual_next_view.append(succ_op)
                        if succ_op.name not in pred_op_of_next_view_op:
                            pred_op_of_next_view_op[succ_op.name] = []
                        pred_op_of_next_view_op[succ_op.name].append(op)
                    else:
                        # create virtual op
                        virtual_op = self._gen_virtual_op(virtual_op_name_gen)
                        virtual_ops.append(virtual_op)
                        out_degree_ops[virtual_op.name] = [succ_op]
                        actual_next_view.append(virtual_op)
                        pred_op_of_next_view_op[virtual_op.name] = [op]
                        virtual_op.add_virtual_pred_op(op)
            actual_view = actual_next_view
            # create channel
            processed_op = set()
            for o_idx, op in enumerate(actual_next_view):
                if op.name in processed_op:
                    continue
                channel = self._gen_channel(channel_name_gen)
                channels.append(channel)
                op.add_input_channel(channel)
                pred_ops = pred_op_of_next_view_op[op.name]
                if v_idx == 0:
                    input_channel = channel
                else:
                    # if pred_op is virtual op, it will use ancestors as producers to channel
                    for pred_op in pred_ops:
                        pred_op.add_output_channel(channel)
                processed_op.add(op.name)
                # find same input op to combine channel
                for other_op in actual_next_view[o_idx + 1:]:
                    if other_op.name in processed_op:
                        continue
                    other_pred_ops = pred_op_of_next_view_op[other_op.name]
                    if len(other_pred_ops) != len(pred_ops):
                        continue
                    same_flag = True
                    for pred_op in pred_ops:
                        if pred_op not in other_pred_ops:
                            same_flag = False
                            break
                    if same_flag:
                        other_op.add_input_channel(channel)
                        processed_op.add(other_op.name)
        output_channel = self._gen_channel(channel_name_gen)
        channels.append(output_channel)
        last_op.add_output_channel(output_channel)

        pack_func, unpack_func = None, None
        pack_func = response_op.pack_response_package

        actual_ops = virtual_ops
523
        for op in used_ops:
524 525 526 527 528 529
            if len(op.get_input_ops()) == 0:
                unpack_func = op.unpack_request_package
                continue
            actual_ops.append(op)

        for c in channels:
B
barriery 已提交
530
            _LOGGER.debug("Channel({}):\n\t- producers: {}\n\t- consumers: {}"
B
barriery 已提交
531
                          .format(c.name, c.get_producers(), c.get_consumers()))
532 533 534 535

        return (actual_ops, channels, input_channel, output_channel, pack_func,
                unpack_func)

B
barriery 已提交
536 537 538
    def get_channels(self):
        return self._channels

539 540
    def build(self):
        (actual_ops, channels, input_channel, output_channel, pack_func,
541
         unpack_func) = self._build_dag(self._response_op)
B
barriery 已提交
542
        _LOGGER.info("[DAG] Succ build DAG")
543 544 545 546 547 548 549 550

        self._actual_ops = actual_ops
        self._channels = channels
        self._input_channel = input_channel
        self._output_channel = output_channel
        self._pack_func = pack_func
        self._unpack_func = unpack_func

B
barriery 已提交
551 552
        self._tracer.set_channels(self._channels)

553 554 555 556 557
        return self._input_channel, self._output_channel, self._pack_func, self._unpack_func

    def start(self):
        self._threads_or_proces = []
        for op in self._actual_ops:
B
barrierye 已提交
558
            op.use_profiler(self._use_profile)
B
barriery 已提交
559
            op.set_tracer(self._tracer)
B
barrierye 已提交
560
            if self._is_thread_op:
561
                self._threads_or_proces.extend(
562 563
                    op.start_with_thread(self._client_type))
            else:
564
                self._threads_or_proces.extend(
565
                    op.start_with_process(self._client_type))
B
barriery 已提交
566 567
        _LOGGER.info("[DAG] start")

568 569 570 571 572 573 574 575 576 577
        # not join yet
        return self._threads_or_proces

    def join(self):
        for x in self._threads_or_proces:
            x.join()

    def stop(self):
        for chl in self._channels:
            chl.stop()
578 579 580
        for op in self._actual_ops:
            op.clean_input_channel()
            op.clean_output_channels()