general_reader_op.cpp 7.3 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "examples/demo-serving/op/general_reader_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"

namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;

int conf_check(const Request *req,
               const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
  int var_num = req->insts(0).tensor_array_size();
36
  VLOG(2) << "var num: " << var_num;
M
MRXLT 已提交
37 38 39 40
  if (var_num != model_config->_feed_type.size()) {
    LOG(ERROR) << "feed var number not match.";
    return -1;
  }
41 42

  VLOG(2) << "begin to checkout feed type";
M
MRXLT 已提交
43
  for (int i = 0; i < var_num; ++i) {
44 45
    VLOG(2) << "feed type[" << i << "]: " <<
        model_config->_feed_type[i];
M
MRXLT 已提交
46 47 48 49 50
    if (model_config->_feed_type[i] !=
        req->insts(0).tensor_array(i).elem_type()) {
      LOG(ERROR) << "feed type not match.";
      return -1;
    }
51
    VLOG(2) << "feed shape size: " << model_config->_feed_shape[i].size();
M
MRXLT 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
    if (model_config->_feed_shape[i].size() ==
        req->insts(0).tensor_array(i).shape_size()) {
      for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
        req->insts(0).tensor_array(i).shape(j);
        if (model_config->_feed_shape[i][j] !=
            req->insts(0).tensor_array(i).shape(j)) {
          LOG(ERROR) << "feed shape not match.";
          return -1;
        }
      }
    } else {
      LOG(ERROR) << "feed shape not match.";
      return -1;
    }
  }
  return 0;
}

int GeneralReaderOp::inference() {
  // reade request from client
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  int batch_size = req->insts_size();
  int input_var_num = 0;

  std::vector<int64_t> elem_type;
  std::vector<int64_t> elem_size;
  std::vector<int64_t> capacity;

  GeneralReaderOutput *res = mutable_data<GeneralReaderOutput>();
  TensorVector *in = &res->tensor_vector;

  if (!res) {
    LOG(ERROR) << "Failed get op tls reader object output";
  }
  if (batch_size <= 0) {
    res->reader_status = -1;
    return 0;
  }

  int var_num = req->insts(0).tensor_array_size();
93
  VLOG(2) << "var num: " << var_num;
M
MRXLT 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
  // read config

  LOG(INFO) << "start to call load general model_conf op";
  baidu::paddle_serving::predictor::Resource &resource =
      baidu::paddle_serving::predictor::Resource::instance();

  LOG(INFO) << "get resource pointer done.";
  std::shared_ptr<PaddleGeneralModelConfig> model_config =
      resource.get_general_model_config();

  LOG(INFO) << "print general model config done.";

  // check
  res->reader_status = conf_check(req, model_config);
  if (res->reader_status != 0) {
    LOG(INFO) << "model conf of server:";
    resource.print_general_model_config(model_config);
    return 0;
  }
  // package tensor

  elem_type.resize(var_num);
  elem_size.resize(var_num);
  capacity.resize(var_num);
  paddle::PaddleTensor lod_tensor;
  for (int i = 0; i < var_num; ++i) {
    elem_type[i] = req->insts(0).tensor_array(i).elem_type();
121
    VLOG(2) << "var[" << i << "] has elem type: " << elem_type[i];
M
MRXLT 已提交
122 123 124 125 126 127 128 129 130 131 132
    if (elem_type[i] == 0) {  // int64
      elem_size[i] = sizeof(int64_t);
      lod_tensor.dtype = paddle::PaddleDType::INT64;
    } else {
      elem_size[i] = sizeof(float);
      lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
    }

    if (req->insts(0).tensor_array(i).shape(0) == -1) {
      lod_tensor.lod.resize(1);
      lod_tensor.lod[0].push_back(0);
133
      VLOG(2) << "var[" << i << "] is lod_tensor";
M
MRXLT 已提交
134 135 136 137 138
    } else {
      lod_tensor.shape.push_back(batch_size);
      capacity[i] = 1;
      for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
        int dim = req->insts(0).tensor_array(i).shape(k);
139
        VLOG(2) << "shape for var[" << i << "]: " << dim;
M
MRXLT 已提交
140 141 142
        capacity[i] *= dim;
        lod_tensor.shape.push_back(dim);
      }
143
      VLOG(2) << "var[" << i << "] is tensor, capacity: " << capacity[i];
M
MRXLT 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157
    }
    if (i == 0) {
      lod_tensor.name = "words";
    } else {
      lod_tensor.name = "label";
    }
    in->push_back(lod_tensor);
  }

  for (int i = 0; i < var_num; ++i) {
    if (in->at(i).lod.size() == 1) {
      for (int j = 0; j < batch_size; ++j) {
        const Tensor &tensor = req->insts(j).tensor_array(i);
        int data_len = tensor.data_size();
158
        VLOG(2) << "tensor size for var[" << i << "]: " << tensor.data_size();
M
MRXLT 已提交
159
        int cur_len = in->at(i).lod[0].back();
160
        VLOG(2) << "current len: " << cur_len;
M
MRXLT 已提交
161
        in->at(i).lod[0].push_back(cur_len + data_len);
162
        VLOG(2) << "new len: " << cur_len + data_len;
M
MRXLT 已提交
163 164 165
      }
      in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]);
      in->at(i).shape = {in->at(i).lod[0].back(), 1};
166
      VLOG(2) << "var[" << i
M
MRXLT 已提交
167 168 169
              << "] is lod_tensor and len=" << in->at(i).lod[0].back();
    } else {
      in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
170
      VLOG(2) << "var[" << i
M
MRXLT 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
              << "] is tensor and capacity=" << batch_size * capacity[i];
    }
  }

  for (int i = 0; i < var_num; ++i) {
    if (elem_type[i] == 0) {
      int64_t *dst_ptr = static_cast<int64_t *>(in->at(i).data.data());
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
        for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
          dst_ptr[offset + k] =
              *(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str();
        }
        if (in->at(i).lod.size() == 1) {
          offset = in->at(i).lod[0][j + 1];
        } else {
          offset += capacity[i];
        }
      }
    } else {
      float *dst_ptr = static_cast<float *>(in->at(i).data.data());
      int offset = 0;
      for (int j = 0; j < batch_size; ++j) {
        for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
          dst_ptr[offset + k] =
              *(const float *)req->insts(j).tensor_array(i).data(k).c_str();
        }
        if (in->at(i).lod.size() == 1) {
          offset = in->at(i).lod[0][j + 1];
        } else {
          offset += capacity[i];
        }
      }
    }
  }

207
  VLOG(2) << "read data from client success";
M
MRXLT 已提交
208 209 210 211 212 213
  // print request
  std::ostringstream oss;
  int64_t *example = reinterpret_cast<int64_t *>((*in)[0].data.data());
  for (int i = 0; i < 10; i++) {
    oss << *(example + i) << " ";
  }
214
  VLOG(2) << "head element of first feed var : " << oss.str();
M
MRXLT 已提交
215 216 217 218 219 220 221
  //
  return 0;
}
DEFINE_OP(GeneralReaderOp);
}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu