Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Serving
提交
1dd2066f
S
Serving
项目概览
PaddlePaddle
/
Serving
大约 1 年 前同步成功
通知
186
Star
833
Fork
253
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
105
列表
看板
标记
里程碑
合并请求
10
Wiki
2
Wiki
分析
仓库
DevOps
项目成员
Pages
S
Serving
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
105
Issue
105
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
2
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1dd2066f
编写于
1月 19, 2020
作者:
M
MRXLT
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add reader & infer op for general server
上级
a6f3a1a7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
441 addition
and
0 deletion
+441
-0
examples/demo-serving/op/general_infer_op.cpp
examples/demo-serving/op/general_infer_op.cpp
+118
-0
examples/demo-serving/op/general_infer_op.h
examples/demo-serving/op/general_infer_op.h
+47
-0
examples/demo-serving/op/general_reader_op.cpp
examples/demo-serving/op/general_reader_op.cpp
+215
-0
examples/demo-serving/op/general_reader_op.h
examples/demo-serving/op/general_reader_op.h
+61
-0
未找到文件。
examples/demo-serving/op/general_infer_op.cpp
0 → 100644
浏览文件 @
1dd2066f
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "examples/demo-serving/op/general_infer_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "examples/demo-serving/op/general_reader_op.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FetchInst
;
using
baidu
::
paddle_serving
::
predictor
::
InferManager
;
int
GeneralInferOp
::
inference
()
{
const
GeneralReaderOutput
*
reader_out
=
get_depend_argument
<
GeneralReaderOutput
>
(
"general_reader_op"
);
if
(
!
reader_out
)
{
LOG
(
ERROR
)
<<
"Failed mutable depended argument, op:"
<<
"general_reader_op"
;
return
-
1
;
}
int
reader_status
=
reader_out
->
reader_status
;
if
(
reader_status
!=
0
)
{
LOG
(
ERROR
)
<<
"Read request wrong."
;
return
-
1
;
}
const
TensorVector
*
in
=
&
reader_out
->
tensor_vector
;
TensorVector
*
out
=
butil
::
get_object
<
TensorVector
>
();
int
batch_size
=
(
*
in
)[
0
].
shape
[
0
];
// infer
if
(
InferManager
::
instance
().
infer
(
GENERAL_MODEL_NAME
,
in
,
out
,
batch_size
))
{
LOG
(
ERROR
)
<<
"Failed do infer in fluid model: "
<<
GENERAL_MODEL_NAME
;
return
-
1
;
}
Response
*
res
=
mutable_data
<
Response
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
FetchInst
*
fetch_inst
=
res
->
add_insts
();
for
(
int
j
=
0
;
j
<
out
->
size
();
++
j
)
{
Tensor
*
tensor
=
fetch_inst
->
add_tensor_array
();
tensor
->
set_elem_type
(
1
);
if
(
out
->
at
(
j
).
lod
.
size
()
==
1
)
{
tensor
->
add_shape
(
-
1
);
}
else
{
for
(
int
k
=
1
;
k
<
out
->
at
(
j
).
shape
.
size
();
++
k
)
{
tensor
->
add_shape
(
out
->
at
(
j
).
shape
[
k
]);
}
}
}
}
for
(
int
i
=
0
;
i
<
out
->
size
();
++
i
)
{
float
*
data_ptr
=
static_cast
<
float
*>
(
out
->
at
(
i
).
data
.
data
());
int
cap
=
1
;
for
(
int
j
=
1
;
j
<
out
->
at
(
i
).
shape
.
size
();
++
j
)
{
cap
*=
out
->
at
(
i
).
shape
[
j
];
}
if
(
out
->
at
(
i
).
lod
.
size
()
==
1
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
out
->
at
(
i
).
lod
[
0
][
j
];
k
<
out
->
at
(
i
).
lod
[
0
][
j
+
1
];
k
++
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
i
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
}
}
}
else
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
j
*
cap
;
k
<
(
j
+
1
)
*
cap
;
++
k
)
{
res
->
mutable_insts
(
j
)
->
mutable_tensor_array
(
i
)
->
add_data
(
reinterpret_cast
<
char
*>
(
&
(
data_ptr
[
k
])),
sizeof
(
float
));
}
}
}
}
/*
for (size_t i = 0; i < in->size(); ++i) {
(*in)[i].shape.clear();
}
in->clear();
butil::return_object<TensorVector>(in);
for (size_t i = 0; i < out->size(); ++i) {
(*out)[i].shape.clear();
}
out->clear();
butil::return_object<TensorVector>(out);
}
*/
return
0
;
}
DEFINE_OP
(
GeneralInferOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
examples/demo-serving/op/general_infer_op.h
0 → 100644
浏览文件 @
1dd2066f
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "examples/demo-serving/general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
static
const
char
*
GENERAL_MODEL_NAME
=
"general_model"
;
class
GeneralInferOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
baidu
::
paddle_serving
::
predictor
::
general_model
::
Response
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralInferOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
examples/demo-serving/op/general_reader_op.cpp
0 → 100644
浏览文件 @
1dd2066f
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "examples/demo-serving/op/general_reader_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
using
baidu
::
paddle_serving
::
predictor
::
MempoolWrapper
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Tensor
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
Request
;
using
baidu
::
paddle_serving
::
predictor
::
general_model
::
FeedInst
;
using
baidu
::
paddle_serving
::
predictor
::
PaddleGeneralModelConfig
;
int
conf_check
(
const
Request
*
req
,
const
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
&
model_config
)
{
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
if
(
var_num
!=
model_config
->
_feed_type
.
size
())
{
LOG
(
ERROR
)
<<
"feed var number not match."
;
return
-
1
;
}
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
model_config
->
_feed_type
[
i
]
!=
req
->
insts
(
0
).
tensor_array
(
i
).
elem_type
())
{
LOG
(
ERROR
)
<<
"feed type not match."
;
return
-
1
;
}
if
(
model_config
->
_feed_shape
[
i
].
size
()
==
req
->
insts
(
0
).
tensor_array
(
i
).
shape_size
())
{
for
(
int
j
=
0
;
j
<
model_config
->
_feed_shape
[
i
].
size
();
++
j
)
{
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
j
);
if
(
model_config
->
_feed_shape
[
i
][
j
]
!=
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
j
))
{
LOG
(
ERROR
)
<<
"feed shape not match."
;
return
-
1
;
}
}
}
else
{
LOG
(
ERROR
)
<<
"feed shape not match."
;
return
-
1
;
}
}
return
0
;
}
int
GeneralReaderOp
::
inference
()
{
// reade request from client
const
Request
*
req
=
dynamic_cast
<
const
Request
*>
(
get_request_message
());
int
batch_size
=
req
->
insts_size
();
int
input_var_num
=
0
;
std
::
vector
<
int64_t
>
elem_type
;
std
::
vector
<
int64_t
>
elem_size
;
std
::
vector
<
int64_t
>
capacity
;
GeneralReaderOutput
*
res
=
mutable_data
<
GeneralReaderOutput
>
();
TensorVector
*
in
=
&
res
->
tensor_vector
;
if
(
!
res
)
{
LOG
(
ERROR
)
<<
"Failed get op tls reader object output"
;
}
if
(
batch_size
<=
0
)
{
res
->
reader_status
=
-
1
;
return
0
;
}
int
var_num
=
req
->
insts
(
0
).
tensor_array_size
();
VLOG
(
3
)
<<
"var num: "
<<
var_num
;
// read config
LOG
(
INFO
)
<<
"start to call load general model_conf op"
;
baidu
::
paddle_serving
::
predictor
::
Resource
&
resource
=
baidu
::
paddle_serving
::
predictor
::
Resource
::
instance
();
LOG
(
INFO
)
<<
"get resource pointer done."
;
std
::
shared_ptr
<
PaddleGeneralModelConfig
>
model_config
=
resource
.
get_general_model_config
();
LOG
(
INFO
)
<<
"print general model config done."
;
// check
res
->
reader_status
=
conf_check
(
req
,
model_config
);
if
(
res
->
reader_status
!=
0
)
{
LOG
(
INFO
)
<<
"model conf of server:"
;
resource
.
print_general_model_config
(
model_config
);
return
0
;
}
// package tensor
elem_type
.
resize
(
var_num
);
elem_size
.
resize
(
var_num
);
capacity
.
resize
(
var_num
);
paddle
::
PaddleTensor
lod_tensor
;
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
elem_type
[
i
]
=
req
->
insts
(
0
).
tensor_array
(
i
).
elem_type
();
VLOG
(
3
)
<<
"var["
<<
i
<<
"] has elem type: "
<<
elem_type
[
i
];
if
(
elem_type
[
i
]
==
0
)
{
// int64
elem_size
[
i
]
=
sizeof
(
int64_t
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
INT64
;
}
else
{
elem_size
[
i
]
=
sizeof
(
float
);
lod_tensor
.
dtype
=
paddle
::
PaddleDType
::
FLOAT32
;
}
if
(
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
0
)
==
-
1
)
{
lod_tensor
.
lod
.
resize
(
1
);
lod_tensor
.
lod
[
0
].
push_back
(
0
);
VLOG
(
3
)
<<
"var["
<<
i
<<
"] is lod_tensor"
;
}
else
{
lod_tensor
.
shape
.
push_back
(
batch_size
);
capacity
[
i
]
=
1
;
for
(
int
k
=
0
;
k
<
req
->
insts
(
0
).
tensor_array
(
i
).
shape_size
();
++
k
)
{
int
dim
=
req
->
insts
(
0
).
tensor_array
(
i
).
shape
(
k
);
VLOG
(
3
)
<<
"shape for var["
<<
i
<<
"]: "
<<
dim
;
capacity
[
i
]
*=
dim
;
lod_tensor
.
shape
.
push_back
(
dim
);
}
VLOG
(
3
)
<<
"var["
<<
i
<<
"] is tensor, capacity: "
<<
capacity
[
i
];
}
if
(
i
==
0
)
{
lod_tensor
.
name
=
"words"
;
}
else
{
lod_tensor
.
name
=
"label"
;
}
in
->
push_back
(
lod_tensor
);
}
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
const
Tensor
&
tensor
=
req
->
insts
(
j
).
tensor_array
(
i
);
int
data_len
=
tensor
.
data_size
();
VLOG
(
3
)
<<
"tensor size for var["
<<
i
<<
"]: "
<<
tensor
.
data_size
();
int
cur_len
=
in
->
at
(
i
).
lod
[
0
].
back
();
VLOG
(
3
)
<<
"current len: "
<<
cur_len
;
in
->
at
(
i
).
lod
[
0
].
push_back
(
cur_len
+
data_len
);
VLOG
(
3
)
<<
"new len: "
<<
cur_len
+
data_len
;
}
in
->
at
(
i
).
data
.
Resize
(
in
->
at
(
i
).
lod
[
0
].
back
()
*
elem_size
[
i
]);
in
->
at
(
i
).
shape
=
{
in
->
at
(
i
).
lod
[
0
].
back
(),
1
};
VLOG
(
3
)
<<
"var["
<<
i
<<
"] is lod_tensor and len="
<<
in
->
at
(
i
).
lod
[
0
].
back
();
}
else
{
in
->
at
(
i
).
data
.
Resize
(
batch_size
*
capacity
[
i
]
*
elem_size
[
i
]);
VLOG
(
3
)
<<
"var["
<<
i
<<
"] is tensor and capacity="
<<
batch_size
*
capacity
[
i
];
}
}
for
(
int
i
=
0
;
i
<
var_num
;
++
i
)
{
if
(
elem_type
[
i
]
==
0
)
{
int64_t
*
dst_ptr
=
static_cast
<
int64_t
*>
(
in
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
data_size
();
++
k
)
{
dst_ptr
[
offset
+
k
]
=
*
(
const
int64_t
*
)
req
->
insts
(
j
).
tensor_array
(
i
).
data
(
k
).
c_str
();
}
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
in
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
}
}
else
{
float
*
dst_ptr
=
static_cast
<
float
*>
(
in
->
at
(
i
).
data
.
data
());
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
batch_size
;
++
j
)
{
for
(
int
k
=
0
;
k
<
req
->
insts
(
j
).
tensor_array
(
i
).
data_size
();
++
k
)
{
dst_ptr
[
offset
+
k
]
=
*
(
const
float
*
)
req
->
insts
(
j
).
tensor_array
(
i
).
data
(
k
).
c_str
();
}
if
(
in
->
at
(
i
).
lod
.
size
()
==
1
)
{
offset
=
in
->
at
(
i
).
lod
[
0
][
j
+
1
];
}
else
{
offset
+=
capacity
[
i
];
}
}
}
}
VLOG
(
3
)
<<
"read data from client success"
;
// print request
std
::
ostringstream
oss
;
int64_t
*
example
=
reinterpret_cast
<
int64_t
*>
((
*
in
)[
0
].
data
.
data
());
for
(
int
i
=
0
;
i
<
10
;
i
++
)
{
oss
<<
*
(
example
+
i
)
<<
" "
;
}
VLOG
(
3
)
<<
"head element of first feed var : "
<<
oss
.
str
();
//
return
0
;
}
DEFINE_OP
(
GeneralReaderOp
);
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
examples/demo-serving/op/general_reader_op.h
0 → 100644
浏览文件 @
1dd2066f
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "examples/demo-serving/general_model_service.pb.h"
#include "examples/demo-serving/load_general_model_service.pb.h"
namespace
baidu
{
namespace
paddle_serving
{
namespace
serving
{
struct
GeneralReaderOutput
{
std
::
vector
<
paddle
::
PaddleTensor
>
tensor_vector
;
int
reader_status
=
0
;
void
Clear
()
{
size_t
tensor_count
=
tensor_vector
.
size
();
for
(
size_t
ti
=
0
;
ti
<
tensor_count
;
++
ti
)
{
tensor_vector
[
ti
].
shape
.
clear
();
}
tensor_vector
.
clear
();
}
std
::
string
ShortDebugString
()
const
{
return
"Not implemented!"
;
}
};
class
GeneralReaderOp
:
public
baidu
::
paddle_serving
::
predictor
::
OpWithChannel
<
GeneralReaderOutput
>
{
public:
typedef
std
::
vector
<
paddle
::
PaddleTensor
>
TensorVector
;
DECLARE_OP
(
GeneralReaderOp
);
int
inference
();
};
}
// namespace serving
}
// namespace paddle_serving
}
// namespace baidu
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录