提交 1dd2066f 编写于 作者: M MRXLT

add reader & infer op for general server

上级 a6f3a1a7
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "examples/demo-serving/op/general_infer_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
#include "core/predictor/framework/resource.h"
#include "examples/demo-serving/op/general_reader_op.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Response;
using baidu::paddle_serving::predictor::general_model::FetchInst;
using baidu::paddle_serving::predictor::InferManager;
int GeneralInferOp::inference() {
const GeneralReaderOutput *reader_out =
get_depend_argument<GeneralReaderOutput>("general_reader_op");
if (!reader_out) {
LOG(ERROR) << "Failed mutable depended argument, op:"
<< "general_reader_op";
return -1;
}
int reader_status = reader_out->reader_status;
if (reader_status != 0) {
LOG(ERROR) << "Read request wrong.";
return -1;
}
const TensorVector *in = &reader_out->tensor_vector;
TensorVector *out = butil::get_object<TensorVector>();
int batch_size = (*in)[0].shape[0];
// infer
if (InferManager::instance().infer(GENERAL_MODEL_NAME, in, out, batch_size)) {
LOG(ERROR) << "Failed do infer in fluid model: " << GENERAL_MODEL_NAME;
return -1;
}
Response *res = mutable_data<Response>();
for (int i = 0; i < batch_size; ++i) {
FetchInst *fetch_inst = res->add_insts();
for (int j = 0; j < out->size(); ++j) {
Tensor *tensor = fetch_inst->add_tensor_array();
tensor->set_elem_type(1);
if (out->at(j).lod.size() == 1) {
tensor->add_shape(-1);
} else {
for (int k = 1; k < out->at(j).shape.size(); ++k) {
tensor->add_shape(out->at(j).shape[k]);
}
}
}
}
for (int i = 0; i < out->size(); ++i) {
float *data_ptr = static_cast<float *>(out->at(i).data.data());
int cap = 1;
for (int j = 1; j < out->at(i).shape.size(); ++j) {
cap *= out->at(i).shape[j];
}
if (out->at(i).lod.size() == 1) {
for (int j = 0; j < batch_size; ++j) {
for (int k = out->at(i).lod[0][j]; k < out->at(i).lod[0][j + 1]; k++) {
res->mutable_insts(j)->mutable_tensor_array(i)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
} else {
for (int j = 0; j < batch_size; ++j) {
for (int k = j * cap; k < (j + 1) * cap; ++k) {
res->mutable_insts(j)->mutable_tensor_array(i)->add_data(
reinterpret_cast<char *>(&(data_ptr[k])), sizeof(float));
}
}
}
}
/*
for (size_t i = 0; i < in->size(); ++i) {
(*in)[i].shape.clear();
}
in->clear();
butil::return_object<TensorVector>(in);
for (size_t i = 0; i < out->size(); ++i) {
(*out)[i].shape.clear();
}
out->clear();
butil::return_object<TensorVector>(out);
}
*/
return 0;
}
DEFINE_OP(GeneralInferOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include "examples/demo-serving/general_model_service.pb.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
static const char* GENERAL_MODEL_NAME = "general_model";
class GeneralInferOp
: public baidu::paddle_serving::predictor::OpWithChannel<
baidu::paddle_serving::predictor::general_model::Response> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralInferOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "examples/demo-serving/op/general_reader_op.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include "core/predictor/framework/infer.h"
#include "core/predictor/framework/memory.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::general_model::Tensor;
using baidu::paddle_serving::predictor::general_model::Request;
using baidu::paddle_serving::predictor::general_model::FeedInst;
using baidu::paddle_serving::predictor::PaddleGeneralModelConfig;
int conf_check(const Request *req,
const std::shared_ptr<PaddleGeneralModelConfig> &model_config) {
int var_num = req->insts(0).tensor_array_size();
if (var_num != model_config->_feed_type.size()) {
LOG(ERROR) << "feed var number not match.";
return -1;
}
for (int i = 0; i < var_num; ++i) {
if (model_config->_feed_type[i] !=
req->insts(0).tensor_array(i).elem_type()) {
LOG(ERROR) << "feed type not match.";
return -1;
}
if (model_config->_feed_shape[i].size() ==
req->insts(0).tensor_array(i).shape_size()) {
for (int j = 0; j < model_config->_feed_shape[i].size(); ++j) {
req->insts(0).tensor_array(i).shape(j);
if (model_config->_feed_shape[i][j] !=
req->insts(0).tensor_array(i).shape(j)) {
LOG(ERROR) << "feed shape not match.";
return -1;
}
}
} else {
LOG(ERROR) << "feed shape not match.";
return -1;
}
}
return 0;
}
int GeneralReaderOp::inference() {
// reade request from client
const Request *req = dynamic_cast<const Request *>(get_request_message());
int batch_size = req->insts_size();
int input_var_num = 0;
std::vector<int64_t> elem_type;
std::vector<int64_t> elem_size;
std::vector<int64_t> capacity;
GeneralReaderOutput *res = mutable_data<GeneralReaderOutput>();
TensorVector *in = &res->tensor_vector;
if (!res) {
LOG(ERROR) << "Failed get op tls reader object output";
}
if (batch_size <= 0) {
res->reader_status = -1;
return 0;
}
int var_num = req->insts(0).tensor_array_size();
VLOG(3) << "var num: " << var_num;
// read config
LOG(INFO) << "start to call load general model_conf op";
baidu::paddle_serving::predictor::Resource &resource =
baidu::paddle_serving::predictor::Resource::instance();
LOG(INFO) << "get resource pointer done.";
std::shared_ptr<PaddleGeneralModelConfig> model_config =
resource.get_general_model_config();
LOG(INFO) << "print general model config done.";
// check
res->reader_status = conf_check(req, model_config);
if (res->reader_status != 0) {
LOG(INFO) << "model conf of server:";
resource.print_general_model_config(model_config);
return 0;
}
// package tensor
elem_type.resize(var_num);
elem_size.resize(var_num);
capacity.resize(var_num);
paddle::PaddleTensor lod_tensor;
for (int i = 0; i < var_num; ++i) {
elem_type[i] = req->insts(0).tensor_array(i).elem_type();
VLOG(3) << "var[" << i << "] has elem type: " << elem_type[i];
if (elem_type[i] == 0) { // int64
elem_size[i] = sizeof(int64_t);
lod_tensor.dtype = paddle::PaddleDType::INT64;
} else {
elem_size[i] = sizeof(float);
lod_tensor.dtype = paddle::PaddleDType::FLOAT32;
}
if (req->insts(0).tensor_array(i).shape(0) == -1) {
lod_tensor.lod.resize(1);
lod_tensor.lod[0].push_back(0);
VLOG(3) << "var[" << i << "] is lod_tensor";
} else {
lod_tensor.shape.push_back(batch_size);
capacity[i] = 1;
for (int k = 0; k < req->insts(0).tensor_array(i).shape_size(); ++k) {
int dim = req->insts(0).tensor_array(i).shape(k);
VLOG(3) << "shape for var[" << i << "]: " << dim;
capacity[i] *= dim;
lod_tensor.shape.push_back(dim);
}
VLOG(3) << "var[" << i << "] is tensor, capacity: " << capacity[i];
}
if (i == 0) {
lod_tensor.name = "words";
} else {
lod_tensor.name = "label";
}
in->push_back(lod_tensor);
}
for (int i = 0; i < var_num; ++i) {
if (in->at(i).lod.size() == 1) {
for (int j = 0; j < batch_size; ++j) {
const Tensor &tensor = req->insts(j).tensor_array(i);
int data_len = tensor.data_size();
VLOG(3) << "tensor size for var[" << i << "]: " << tensor.data_size();
int cur_len = in->at(i).lod[0].back();
VLOG(3) << "current len: " << cur_len;
in->at(i).lod[0].push_back(cur_len + data_len);
VLOG(3) << "new len: " << cur_len + data_len;
}
in->at(i).data.Resize(in->at(i).lod[0].back() * elem_size[i]);
in->at(i).shape = {in->at(i).lod[0].back(), 1};
VLOG(3) << "var[" << i
<< "] is lod_tensor and len=" << in->at(i).lod[0].back();
} else {
in->at(i).data.Resize(batch_size * capacity[i] * elem_size[i]);
VLOG(3) << "var[" << i
<< "] is tensor and capacity=" << batch_size * capacity[i];
}
}
for (int i = 0; i < var_num; ++i) {
if (elem_type[i] == 0) {
int64_t *dst_ptr = static_cast<int64_t *>(in->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
dst_ptr[offset + k] =
*(const int64_t *)req->insts(j).tensor_array(i).data(k).c_str();
}
if (in->at(i).lod.size() == 1) {
offset = in->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
} else {
float *dst_ptr = static_cast<float *>(in->at(i).data.data());
int offset = 0;
for (int j = 0; j < batch_size; ++j) {
for (int k = 0; k < req->insts(j).tensor_array(i).data_size(); ++k) {
dst_ptr[offset + k] =
*(const float *)req->insts(j).tensor_array(i).data(k).c_str();
}
if (in->at(i).lod.size() == 1) {
offset = in->at(i).lod[0][j + 1];
} else {
offset += capacity[i];
}
}
}
}
VLOG(3) << "read data from client success";
// print request
std::ostringstream oss;
int64_t *example = reinterpret_cast<int64_t *>((*in)[0].data.data());
for (int i = 0; i < 10; i++) {
oss << *(example + i) << " ";
}
VLOG(3) << "head element of first feed var : " << oss.str();
//
return 0;
}
DEFINE_OP(GeneralReaderOp);
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#ifdef BCLOUD
#ifdef WITH_GPU
#include "paddle/paddle_inference_api.h"
#else
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#endif
#else
#include "paddle_inference_api.h" // NOLINT
#endif
#include <string>
#include "core/predictor/framework/resource.h"
#include "examples/demo-serving/general_model_service.pb.h"
#include "examples/demo-serving/load_general_model_service.pb.h"
namespace baidu {
namespace paddle_serving {
namespace serving {
struct GeneralReaderOutput {
std::vector<paddle::PaddleTensor> tensor_vector;
int reader_status = 0;
void Clear() {
size_t tensor_count = tensor_vector.size();
for (size_t ti = 0; ti < tensor_count; ++ti) {
tensor_vector[ti].shape.clear();
}
tensor_vector.clear();
}
std::string ShortDebugString() const { return "Not implemented!"; }
};
class GeneralReaderOp : public baidu::paddle_serving::predictor::OpWithChannel<
GeneralReaderOutput> {
public:
typedef std::vector<paddle::PaddleTensor> TensorVector;
DECLARE_OP(GeneralReaderOp);
int inference();
};
} // namespace serving
} // namespace paddle_serving
} // namespace baidu
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册