bert_service_op.cpp 6.1 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "demo-serving/op/bert_service_op.h"
#include <cstdio>
#include <string>
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"
namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::bert_service::BertResInstance;
using baidu::paddle_serving::predictor::bert_service::Response;
using baidu::paddle_serving::predictor::bert_service::BertReqInstance;
using baidu::paddle_serving::predictor::bert_service::Request;
using baidu::paddle_serving::predictor::bert_service::Embedding_values;

X
xulongteng 已提交
31
extern int64_t MAX_SEQ_LEN = 128;
M
MRXLT 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
const bool POOLING = true;
const int LAYER_NUM = 12;
const int EMB_SIZE = 768;

int BertServiceOp::inference() {
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
  Response *res = mutable_data<Response>();

  uint32_t batch_size = req->instances_size();
  if (batch_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
    return 0;
  }

X
xulongteng 已提交
48 49
  MAX_SEQ_LEN = req->instances(0).max_seq_len();

M
MRXLT 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  paddle::PaddleTensor src_ids;
  paddle::PaddleTensor pos_ids;
  paddle::PaddleTensor seg_ids;
  paddle::PaddleTensor input_masks;
  src_ids.name = std::string("src_ids");
  pos_ids.name = std::string("pos_ids");
  seg_ids.name = std::string("sent_ids");
  input_masks.name = std::string("input_mask");

  src_ids.dtype = paddle::PaddleDType::INT64;
  src_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  src_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  pos_ids.dtype = paddle::PaddleDType::INT64;
  pos_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  pos_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  seg_ids.dtype = paddle::PaddleDType::INT64;
  seg_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  seg_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  input_masks.dtype = paddle::PaddleDType::FLOAT32;
  input_masks.shape = {batch_size, MAX_SEQ_LEN, 1};
  input_masks.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(float));

  std::vector<std::vector<size_t>> lod_set;
  lod_set.resize(1);
  for (uint32_t i = 0; i < batch_size; i++) {
    lod_set[0].push_back(i * MAX_SEQ_LEN);
  }
X
xulongteng 已提交
80 81 82 83
  // src_ids.lod = lod_set;
  // pos_ids.lod = lod_set;
  // seg_ids.lod = lod_set;
  // input_masks.lod = lod_set;
M
MRXLT 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96

  uint32_t index = 0;
  for (uint32_t i = 0; i < batch_size; i++) {
    int64_t *src_data = static_cast<int64_t *>(src_ids.data.data()) + index;
    int64_t *pos_data = static_cast<int64_t *>(pos_ids.data.data()) + index;
    int64_t *seg_data = static_cast<int64_t *>(seg_ids.data.data()) + index;
    float *input_masks_data =
        static_cast<float *>(input_masks.data.data()) + index;

    const BertReqInstance &req_instance = req->instances(i);

    memcpy(src_data,
           req_instance.token_ids().data(),
X
xulongteng 已提交
97
           sizeof(int64_t) * MAX_SEQ_LEN);
X
xulongteng 已提交
98
#if 1
M
MRXLT 已提交
99 100
    memcpy(pos_data,
           req_instance.position_ids().data(),
X
xulongteng 已提交
101
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
102 103
    memcpy(seg_data,
           req_instance.sentence_type_ids().data(),
X
xulongteng 已提交
104
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
105 106
    memcpy(input_masks_data,
           req_instance.input_masks().data(),
X
xulongteng 已提交
107
           sizeof(float) * MAX_SEQ_LEN);
X
xulongteng 已提交
108
#endif
X
xulongteng 已提交
109
    index += MAX_SEQ_LEN;
M
MRXLT 已提交
110 111 112 113 114 115 116 117 118 119 120 121
  }

  in->push_back(src_ids);
  in->push_back(pos_ids);
  in->push_back(seg_ids);
  in->push_back(input_masks);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
    return -1;
  }
X
xulongteng 已提交
122

X
xulongteng 已提交
123 124 125 126 127
  /*
      float* example = (float*)(*in)[3].data.data();
      for(uint32_t i = 0; i < MAX_SEQ_LEN; i++){
          LOG(INFO) << *(example + i);
  */
M
MRXLT 已提交
128 129 130 131 132 133 134

  if (predictor::InferManager::instance().infer(
          BERT_MODEL_NAME, in, out, batch_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: " << BERT_MODEL_NAME;
    return -1;
  }

X
xulongteng 已提交
135
#if 0
M
MRXLT 已提交
136 137 138 139
    LOG(INFO) << "batch_size : " << out->at(0).shape[0]
        << " seq_len : " << out->at(0).shape[1]
        << " emb_size : " << out->at(0).shape[2];

X
xulongteng 已提交
140
    float *out_data = reinterpret_cast<float *>out->at(0).data.data();
M
MRXLT 已提交
141 142 143 144 145 146 147 148 149 150
    for (uint32_t bi = 0; bi < batch_size; bi++) {
      BertResInstance *res_instance = res->add_instances();
      for (uint32_t si = 0; si < MAX_SEQ_LEN; si++) {
        Embedding_values *emb_instance = res_instance->add_instances();
        for (uint32_t ei = 0; ei < EMB_SIZE; ei++) {
          uint32_t index = bi * MAX_SEQ_LEN * EMB_SIZE + si * EMB_SIZE + ei;
          emb_instance->add_values(out_data[index]);
        }
      }
    }
X
xulongteng 已提交
151
#else
X
xulongteng 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
  LOG(INFO) << "batch_size : " << out->at(0).shape[0]
            << " emb_size : " << out->at(0).shape[1];
  float *out_data = reinterpret_cast<float *> out->at(0).data.data();
  for (uint32_t bi = 0; bi < batch_size; bi++) {
    BertResInstance *res_instance = res->add_instances();
    for (uint32_t si = 0; si < 1; si++) {
      Embedding_values *emb_instance = res_instance->add_instances();
      for (uint32_t ei = 0; ei < EMB_SIZE; ei++) {
        uint32_t index = bi * EMB_SIZE + ei;
        emb_instance->add_values(out_data[index]);
      }
    }
  }
X
xulongteng 已提交
165 166

#endif
X
xulongteng 已提交
167 168 169 170 171
  for (size_t i = 0; i < in->size(); ++i) {
    (*in)[i].shape.clear();
  }
  in->clear();
  butil::return_object<TensorVector>(in);
M
MRXLT 已提交
172

X
xulongteng 已提交
173 174 175 176 177
  for (size_t i = 0; i < out->size(); ++i) {
    (*out)[i].shape.clear();
  }
  out->clear();
  butil::return_object<TensorVector>(out);
M
MRXLT 已提交
178 179 180 181 182 183 184 185
  return 0;
}

DEFINE_OP(BertServiceOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu