bert_service_op.cpp 5.6 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "demo-serving/op/bert_service_op.h"
#include <cstdio>
#include <string>
#include "predictor/framework/infer.h"
#include "predictor/framework/memory.h"
namespace baidu {
namespace paddle_serving {
namespace serving {

using baidu::paddle_serving::predictor::MempoolWrapper;
using baidu::paddle_serving::predictor::bert_service::BertResInstance;
using baidu::paddle_serving::predictor::bert_service::Response;
using baidu::paddle_serving::predictor::bert_service::BertReqInstance;
using baidu::paddle_serving::predictor::bert_service::Request;
using baidu::paddle_serving::predictor::bert_service::Embedding_values;

X
xulongteng 已提交
31
const uint32_t MAX_SEQ_LEN = 64;
M
MRXLT 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
const bool POOLING = true;
const int LAYER_NUM = 12;
const int EMB_SIZE = 768;

int BertServiceOp::inference() {
  const Request *req = dynamic_cast<const Request *>(get_request_message());

  TensorVector *in = butil::get_object<TensorVector>();
  Response *res = mutable_data<Response>();

  uint32_t batch_size = req->instances_size();
  if (batch_size <= 0) {
    LOG(WARNING) << "No instances need to inference!";
    return 0;
  }

  paddle::PaddleTensor src_ids;
  paddle::PaddleTensor pos_ids;
  paddle::PaddleTensor seg_ids;
  paddle::PaddleTensor input_masks;
  src_ids.name = std::string("src_ids");
  pos_ids.name = std::string("pos_ids");
  seg_ids.name = std::string("sent_ids");
  input_masks.name = std::string("input_mask");

  src_ids.dtype = paddle::PaddleDType::INT64;
  src_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  src_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  pos_ids.dtype = paddle::PaddleDType::INT64;
  pos_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  pos_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  seg_ids.dtype = paddle::PaddleDType::INT64;
  seg_ids.shape = {batch_size, MAX_SEQ_LEN, 1};
  seg_ids.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(int64_t));

  input_masks.dtype = paddle::PaddleDType::FLOAT32;
  input_masks.shape = {batch_size, MAX_SEQ_LEN, 1};
  input_masks.data.Resize(batch_size * MAX_SEQ_LEN * sizeof(float));

  std::vector<std::vector<size_t>> lod_set;
  lod_set.resize(1);
  for (uint32_t i = 0; i < batch_size; i++) {
    lod_set[0].push_back(i * MAX_SEQ_LEN);
  }
X
xulongteng 已提交
78 79 80 81
  //src_ids.lod = lod_set;
  //pos_ids.lod = lod_set;
  //seg_ids.lod = lod_set;
  //input_masks.lod = lod_set;
M
MRXLT 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94

  uint32_t index = 0;
  for (uint32_t i = 0; i < batch_size; i++) {
    int64_t *src_data = static_cast<int64_t *>(src_ids.data.data()) + index;
    int64_t *pos_data = static_cast<int64_t *>(pos_ids.data.data()) + index;
    int64_t *seg_data = static_cast<int64_t *>(seg_ids.data.data()) + index;
    float *input_masks_data =
        static_cast<float *>(input_masks.data.data()) + index;

    const BertReqInstance &req_instance = req->instances(i);

    memcpy(src_data,
           req_instance.token_ids().data(),
X
xulongteng 已提交
95
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
96 97
    memcpy(pos_data,
           req_instance.position_ids().data(),
X
xulongteng 已提交
98
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
99 100
    memcpy(seg_data,
           req_instance.sentence_type_ids().data(),
X
xulongteng 已提交
101
           sizeof(int64_t) * MAX_SEQ_LEN);
M
MRXLT 已提交
102 103
    memcpy(input_masks_data,
           req_instance.input_masks().data(),
X
xulongteng 已提交
104 105
           sizeof(float) * MAX_SEQ_LEN);
    index += MAX_SEQ_LEN;
M
MRXLT 已提交
106 107 108 109 110 111 112 113 114 115 116 117
  }

  in->push_back(src_ids);
  in->push_back(pos_ids);
  in->push_back(seg_ids);
  in->push_back(input_masks);

  TensorVector *out = butil::get_object<TensorVector>();
  if (!out) {
    LOG(ERROR) << "Failed get tls output object";
    return -1;
  }
X
xulongteng 已提交
118

M
MRXLT 已提交
119
    LOG(INFO) << "batch_size : " << batch_size;
X
xulongteng 已提交
120 121
    LOG(INFO) << "MAX_SEQ_LEN : " << (*in)[0].shape[1];
    float* example = (float*)(*in)[3].data.data();
M
MRXLT 已提交
122 123 124
    for(uint32_t i = 0; i < MAX_SEQ_LEN; i++){
        LOG(INFO) << *(example + i);
    }
X
xulongteng 已提交
125

M
MRXLT 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

  if (predictor::InferManager::instance().infer(
          BERT_MODEL_NAME, in, out, batch_size)) {
    LOG(ERROR) << "Failed do infer in fluid model: " << BERT_MODEL_NAME;
    return -1;
  }

  //  float *out_data = static_cast<float *>(out->at(0).data.data());
  LOG(INFO) << "check point";
  /*
    LOG(INFO) << "batch_size : " << out->at(0).shape[0]
        << " seq_len : " << out->at(0).shape[1]
        << " emb_size : " << out->at(0).shape[2];

    for (uint32_t bi = 0; bi < batch_size; bi++) {
      BertResInstance *res_instance = res->add_instances();
      for (uint32_t si = 0; si < MAX_SEQ_LEN; si++) {
        Embedding_values *emb_instance = res_instance->add_instances();
        for (uint32_t ei = 0; ei < EMB_SIZE; ei++) {
          uint32_t index = bi * MAX_SEQ_LEN * EMB_SIZE + si * EMB_SIZE + ei;
          emb_instance->add_values(out_data[index]);
        }
      }
    }

    for (size_t i = 0; i < in->size(); ++i) {
      (*in)[i].shape.clear();
    }
    in->clear();
    butil::return_object<TensorVector>(in);

    for (size_t i = 0; i < out->size(); ++i) {
      (*out)[i].shape.clear();
    }
    out->clear();
    butil::return_object<TensorVector>(out);
  */
  return 0;
}

DEFINE_OP(BertServiceOp);

}  // namespace serving
}  // namespace paddle_serving
}  // namespace baidu