__init__.py 28.4 KB
Newer Older
M
MRXLT 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
barrierye 已提交
14
# pylint: disable=doc-string-missing
M
MRXLT 已提交
15 16 17 18 19 20

import os
from .proto import server_configure_pb2 as server_sdk
from .proto import general_model_config_pb2 as m_config
import google.protobuf.text_format
import tarfile
M
MRXLT 已提交
21
import socket
22
import paddle_serving_server_gpu as paddle_serving_server
23
import time
24
from .version import serving_server_version
M
MRXLT 已提交
25
from contextlib import closing
G
guru4elephant 已提交
26
import argparse
B
barrierye 已提交
27
import collections
M
MRXLT 已提交
28
import fcntl
M
MRXLT 已提交
29

B
barrierye 已提交
30 31 32
import numpy as np
import grpc
from .proto import multi_lang_general_model_service_pb2
B
barrierye 已提交
33 34 35
import sys
sys.path.append(
    os.path.join(os.path.abspath(os.path.dirname(__file__)), 'proto'))
B
barrierye 已提交
36 37 38 39
from .proto import multi_lang_general_model_service_pb2_grpc
from multiprocessing import Pool, Process
from concurrent import futures

B
barrierye 已提交
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
def serve_args():
    parser = argparse.ArgumentParser("serve")
    parser.add_argument(
        "--thread", type=int, default=10, help="Concurrency of server")
    parser.add_argument(
        "--model", type=str, default="", help="Model for serving")
    parser.add_argument(
        "--port", type=int, default=9292, help="Port of the starting gpu")
    parser.add_argument(
        "--workdir",
        type=str,
        default="workdir",
        help="Working dir of current service")
    parser.add_argument(
        "--device", type=str, default="gpu", help="Type of device")
B
barrierye 已提交
56
    parser.add_argument("--gpu_ids", type=str, default="", help="gpu ids")
57
    parser.add_argument(
58
        "--name", type=str, default="None", help="Default service name")
M
MRXLT 已提交
59
    parser.add_argument(
M
MRXLT 已提交
60 61 62 63
        "--mem_optim",
        default=False,
        action="store_true",
        help="Memory optimize")
M
MRXLT 已提交
64
    parser.add_argument(
M
MRXLT 已提交
65
        "--ir_optim", default=False, action="store_true", help="Graph optimize")
M
MRXLT 已提交
66 67 68
    parser.add_argument(
        "--max_body_size",
        type=int,
M
MRXLT 已提交
69
        default=512 * 1024 * 1024,
M
MRXLT 已提交
70
        help="Limit sizes of messages")
B
barrierye 已提交
71 72 73 74 75
    parser.add_argument(
        "--use_multilang",
        default=False,
        action="store_true",
        help="Use Multi-language-service")
76
    return parser.parse_args()
M
MRXLT 已提交
77

B
barrierye 已提交
78

M
MRXLT 已提交
79 80 81
class OpMaker(object):
    def __init__(self):
        self.op_dict = {
M
MRXLT 已提交
82 83 84 85 86 87
            "general_infer": "GeneralInferOp",
            "general_reader": "GeneralReaderOp",
            "general_response": "GeneralResponseOp",
            "general_text_reader": "GeneralTextReaderOp",
            "general_text_response": "GeneralTextResponseOp",
            "general_single_kv": "GeneralSingleKVOp",
W
wangjiawei04 已提交
88
            "general_dist_kv_infer": "GeneralDistKVInferOp",
M
MRXLT 已提交
89
            "general_dist_kv": "GeneralDistKVOp"
M
MRXLT 已提交
90
        }
B
barrierye 已提交
91
        self.node_name_suffix_ = collections.defaultdict(int)
M
MRXLT 已提交
92

B
barrierye 已提交
93 94 95 96
    def create(self, node_type, engine_name=None, inputs=[], outputs=[]):
        if node_type not in self.op_dict:
            raise Exception("Op type {} is not supported right now".format(
                node_type))
M
MRXLT 已提交
97
        node = server_sdk.DAGNode()
B
barrierye 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        # node.name will be used as the infer engine name
        if engine_name:
            node.name = engine_name
        else:
            node.name = '{}_{}'.format(node_type,
                                       self.node_name_suffix_[node_type])
            self.node_name_suffix_[node_type] += 1

        node.type = self.op_dict[node_type]
        if inputs:
            for dep_node_str in inputs:
                dep_node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(dep_node_str, dep_node)
                dep = server_sdk.DAGNodeDependency()
                dep.name = dep_node.name
                dep.mode = "RO"
                node.dependencies.extend([dep])
        # Because the return value will be used as the key value of the
        # dict, and the proto object is variable which cannot be hashed,
        # so it is processed into a string. This has little effect on
        # overall efficiency.
        return google.protobuf.text_format.MessageToString(node)
M
MRXLT 已提交
120 121 122 123 124 125 126 127


class OpSeqMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        self.workflow.workflow_type = "Sequence"

B
barrierye 已提交
128 129 130 131 132 133 134
    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        if len(node.dependencies) > 1:
            raise Exception(
                'Set more than one predecessor for op in OpSeqMaker is not allowed.'
            )
M
MRXLT 已提交
135
        if len(self.workflow.nodes) >= 1:
B
barrierye 已提交
136 137 138 139 140 141 142 143 144 145 146
            if len(node.dependencies) == 0:
                dep = server_sdk.DAGNodeDependency()
                dep.name = self.workflow.nodes[-1].name
                dep.mode = "RO"
                node.dependencies.extend([dep])
            elif len(node.dependencies) == 1:
                if node.dependencies[0].name != self.workflow.nodes[-1].name:
                    raise Exception(
                        'You must add op in order in OpSeqMaker. The previous op is {}, but the current op is followed by {}.'.
                        format(node.dependencies[0].name, self.workflow.nodes[
                            -1].name))
M
MRXLT 已提交
147 148 149 150 151 152 153 154
        self.workflow.nodes.extend([node])

    def get_op_sequence(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


B
barrierye 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
class OpGraphMaker(object):
    def __init__(self):
        self.workflow = server_sdk.Workflow()
        self.workflow.name = "workflow1"
        # Currently, SDK only supports "Sequence"
        self.workflow.workflow_type = "Sequence"

    def add_op(self, node_str):
        node = server_sdk.DAGNode()
        google.protobuf.text_format.Parse(node_str, node)
        self.workflow.nodes.extend([node])

    def get_op_graph(self):
        workflow_conf = server_sdk.WorkflowConf()
        workflow_conf.workflows.extend([self.workflow])
        return workflow_conf


M
MRXLT 已提交
173 174 175 176 177 178 179
class Server(object):
    def __init__(self):
        self.server_handle_ = None
        self.infer_service_conf = None
        self.model_toolkit_conf = None
        self.resource_conf = None
        self.memory_optimization = False
M
MRXLT 已提交
180
        self.ir_optimization = False
M
MRXLT 已提交
181 182 183 184 185 186
        self.model_conf = None
        self.workflow_fn = "workflow.prototxt"
        self.resource_fn = "resource.prototxt"
        self.infer_service_fn = "infer_service.prototxt"
        self.model_toolkit_fn = "model_toolkit.prototxt"
        self.general_model_config_fn = "general_model.prototxt"
W
wangjiawei04 已提交
187
        self.cube_config_fn = "cube.conf"
M
MRXLT 已提交
188 189
        self.workdir = ""
        self.max_concurrency = 0
M
MRXLT 已提交
190
        self.num_threads = 4
M
MRXLT 已提交
191 192
        self.port = 8080
        self.reload_interval_s = 10
M
MRXLT 已提交
193
        self.max_body_size = 64 * 1024 * 1024
M
MRXLT 已提交
194 195
        self.module_path = os.path.dirname(paddle_serving_server.__file__)
        self.cur_path = os.getcwd()
M
MRXLT 已提交
196
        self.use_local_bin = False
M
MRXLT 已提交
197
        self.gpuid = 0
B
barrierye 已提交
198
        self.model_config_paths = None  # for multi-model in a workflow
M
MRXLT 已提交
199 200 201 202 203 204 205

    def set_max_concurrency(self, concurrency):
        self.max_concurrency = concurrency

    def set_num_threads(self, threads):
        self.num_threads = threads

M
MRXLT 已提交
206 207 208 209 210 211 212 213
    def set_max_body_size(self, body_size):
        if body_size >= self.max_body_size:
            self.max_body_size = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )

M
MRXLT 已提交
214 215 216 217 218 219 220 221 222
    def set_port(self, port):
        self.port = port

    def set_reload_interval(self, interval):
        self.reload_interval_s = interval

    def set_op_sequence(self, op_seq):
        self.workflow_conf = op_seq

B
barrierye 已提交
223 224 225
    def set_op_graph(self, op_graph):
        self.workflow_conf = op_graph

M
MRXLT 已提交
226 227 228
    def set_memory_optimize(self, flag=False):
        self.memory_optimization = flag

M
MRXLT 已提交
229 230 231
    def set_ir_optimize(self, flag=False):
        self.ir_optimization = flag

M
MRXLT 已提交
232 233 234 235
    def check_local_bin(self):
        if "SERVING_BIN" in os.environ:
            self.use_local_bin = True
            self.bin_path = os.environ["SERVING_BIN"]
M
MRXLT 已提交
236

M
MRXLT 已提交
237
    def check_cuda(self):
M
MRXLT 已提交
238
        cuda_flag = False
M
MRXLT 已提交
239 240 241
        r = os.popen("ldd {} | grep cudart".format(self.bin_path))
        r = r.read().split("=")
        if len(r) >= 2 and "cudart" in r[1] and os.system(
M
MRXLT 已提交
242 243 244
                "ls /dev/ | grep nvidia > /dev/null") == 0:
            cuda_flag = True
        if not cuda_flag:
M
MRXLT 已提交
245 246 247 248
            raise SystemExit(
                "CUDA not found, please check your environment or use cpu version by \"pip install paddle_serving_server\""
            )

M
MRXLT 已提交
249 250 251
    def set_gpuid(self, gpuid=0):
        self.gpuid = gpuid

B
barrierye 已提交
252
    def _prepare_engine(self, model_config_paths, device):
M
MRXLT 已提交
253 254 255
        if self.model_toolkit_conf == None:
            self.model_toolkit_conf = server_sdk.ModelToolkitConf()

B
barrierye 已提交
256 257 258 259 260 261 262 263 264 265 266 267
        for engine_name, model_config_path in model_config_paths.items():
            engine = server_sdk.EngineDesc()
            engine.name = engine_name
            # engine.reloadable_meta = model_config_path + "/fluid_time_file"
            engine.reloadable_meta = self.workdir + "/fluid_time_file"
            os.system("touch {}".format(engine.reloadable_meta))
            engine.reloadable_type = "timestamp_ne"
            engine.runtime_thread_num = 0
            engine.batch_infer_size = 0
            engine.enable_batch_align = 0
            engine.model_data_path = model_config_path
            engine.enable_memory_optimization = self.memory_optimization
M
MRXLT 已提交
268
            engine.enable_ir_optimization = self.ir_optimization
B
barrierye 已提交
269 270 271 272 273 274 275 276 277
            engine.static_optimization = False
            engine.force_update_static_cache = False

            if device == "cpu":
                engine.type = "FLUID_CPU_ANALYSIS_DIR"
            elif device == "gpu":
                engine.type = "FLUID_GPU_ANALYSIS_DIR"

            self.model_toolkit_conf.engines.extend([engine])
M
MRXLT 已提交
278 279 280 281 282 283 284 285 286 287 288

    def _prepare_infer_service(self, port):
        if self.infer_service_conf == None:
            self.infer_service_conf = server_sdk.InferServiceConf()
            self.infer_service_conf.port = port
            infer_service = server_sdk.InferService()
            infer_service.name = "GeneralModelService"
            infer_service.workflows.extend(["workflow1"])
            self.infer_service_conf.services.extend([infer_service])

    def _prepare_resource(self, workdir):
289
        self.workdir = workdir
M
MRXLT 已提交
290 291 292 293 294
        if self.resource_conf == None:
            with open("{}/{}".format(workdir, self.general_model_config_fn),
                      "w") as fout:
                fout.write(str(self.model_conf))
            self.resource_conf = server_sdk.ResourceConf()
W
wangjiawei04 已提交
295 296 297 298 299
            for workflow in self.workflow_conf.workflows:
                for node in workflow.nodes:
                    if "dist_kv" in node.name:
                        self.resource_conf.cube_config_path = workdir
                        self.resource_conf.cube_config_file = self.cube_config_fn
M
MRXLT 已提交
300 301 302 303 304 305 306 307 308
            self.resource_conf.model_toolkit_path = workdir
            self.resource_conf.model_toolkit_file = self.model_toolkit_fn
            self.resource_conf.general_model_path = workdir
            self.resource_conf.general_model_file = self.general_model_config_fn

    def _write_pb_str(self, filepath, pb_obj):
        with open(filepath, "w") as fout:
            fout.write(str(pb_obj))

B
barrierye 已提交
309 310 311 312
    def load_model_config(self, model_config_paths):
        # At present, Serving needs to configure the model path in
        # the resource.prototxt file to determine the input and output
        # format of the workflow. To ensure that the input and output
B
barrierye 已提交
313
        # of multiple models are the same.
B
barrierye 已提交
314 315
        workflow_oi_config_path = None
        if isinstance(model_config_paths, str):
B
barrierye 已提交
316
            # If there is only one model path, use the default infer_op.
M
MRXLT 已提交
317
            # Because there are several infer_op type, we need to find
B
barrierye 已提交
318 319 320
            # it from workflow_conf.
            default_engine_names = [
                'general_infer_0', 'general_dist_kv_infer_0',
B
barrierye 已提交
321
                'general_dist_kv_quant_infer_0'
B
barrierye 已提交
322 323
            ]
            engine_name = None
B
barrierye 已提交
324
            for node in self.workflow_conf.workflows[0].nodes:
B
barrierye 已提交
325 326 327 328 329 330 331 332 333
                if node.name in default_engine_names:
                    engine_name = node.name
                    break
            if engine_name is None:
                raise Exception(
                    "You have set the engine_name of Op. Please use the form {op: model_path} to configure model path"
                )
            self.model_config_paths = {engine_name: model_config_paths}
            workflow_oi_config_path = self.model_config_paths[engine_name]
B
barrierye 已提交
334 335 336 337 338 339 340 341
        elif isinstance(model_config_paths, dict):
            self.model_config_paths = {}
            for node_str, path in model_config_paths.items():
                node = server_sdk.DAGNode()
                google.protobuf.text_format.Parse(node_str, node)
                self.model_config_paths[node.name] = path
            print("You have specified multiple model paths, please ensure "
                  "that the input and output of multiple models are the same.")
M
MRXLT 已提交
342 343
            workflow_oi_config_path = list(self.model_config_paths.items())[0][
                1]
B
barrierye 已提交
344 345 346 347 348
        else:
            raise Exception("The type of model_config_paths must be str or "
                            "dict({op: model_path}), not {}.".format(
                                type(model_config_paths)))

M
MRXLT 已提交
349
        self.model_conf = m_config.GeneralModelConfig()
B
barrierye 已提交
350 351 352
        f = open(
            "{}/serving_server_conf.prototxt".format(workflow_oi_config_path),
            'r')
M
MRXLT 已提交
353 354 355 356 357 358 359 360 361
        self.model_conf = google.protobuf.text_format.Merge(
            str(f.read()), self.model_conf)
        # check config here
        # print config here

    def download_bin(self):
        os.chdir(self.module_path)
        need_download = False
        device_version = "serving-gpu-"
362 363
        folder_name = device_version + serving_server_version
        tar_name = folder_name + ".tar.gz"
M
MRXLT 已提交
364
        bin_url = "https://paddle-serving.bj.bcebos.com/bin/" + tar_name
365 366 367 368
        self.server_path = os.path.join(self.module_path, folder_name)

        download_flag = "{}/{}.is_download".format(self.module_path,
                                                   folder_name)
M
MRXLT 已提交
369 370 371 372 373

        #acquire lock
        version_file = open("{}/version.py".format(self.module_path), "r")
        fcntl.flock(version_file, fcntl.LOCK_EX)

374 375 376 377 378
        if os.path.exists(download_flag):
            os.chdir(self.cur_path)
            self.bin_path = self.server_path + "/serving"
            return

M
MRXLT 已提交
379
        if not os.path.exists(self.server_path):
380 381
            os.system("touch {}/{}.is_download".format(self.module_path,
                                                       folder_name))
M
MRXLT 已提交
382 383 384 385 386
            print('Frist time run, downloading PaddleServing components ...')
            r = os.system('wget ' + bin_url + ' --no-check-certificate')
            if r != 0:
                if os.path.exists(tar_name):
                    os.remove(tar_name)
M
MRXLT 已提交
387 388 389
                raise SystemExit(
                    'Download failed, please check your network or permission of {}.'.
                    format(self.module_path))
M
MRXLT 已提交
390 391 392 393 394 395 396 397 398
            else:
                try:
                    print('Decompressing files ..')
                    tar = tarfile.open(tar_name)
                    tar.extractall()
                    tar.close()
                except:
                    if os.path.exists(exe_path):
                        os.remove(exe_path)
M
MRXLT 已提交
399 400 401
                    raise SystemExit(
                        'Decompressing failed, please check your permission of {} or disk space left.'.
                        format(self.module_path))
M
MRXLT 已提交
402 403
                finally:
                    os.remove(tar_name)
M
MRXLT 已提交
404
        #release lock
B
barrierye 已提交
405
        version_file.close()
M
MRXLT 已提交
406 407 408 409 410 411 412 413 414 415 416
        os.chdir(self.cur_path)
        self.bin_path = self.server_path + "/serving"

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
        if workdir == None:
            workdir = "./tmp"
            os.system("mkdir {}".format(workdir))
        else:
            os.system("mkdir {}".format(workdir))
        os.system("touch {}/fluid_time_file".format(workdir))

M
MRXLT 已提交
417
        if not self.port_is_available(port):
M
MRXLT 已提交
418 419
            raise SystemExit("Prot {} is already used".format(port))

G
guru4elephant 已提交
420
        self.set_port(port)
M
MRXLT 已提交
421
        self._prepare_resource(workdir)
B
barrierye 已提交
422
        self._prepare_engine(self.model_config_paths, device)
M
MRXLT 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435
        self._prepare_infer_service(port)
        self.workdir = workdir

        infer_service_fn = "{}/{}".format(workdir, self.infer_service_fn)
        workflow_fn = "{}/{}".format(workdir, self.workflow_fn)
        resource_fn = "{}/{}".format(workdir, self.resource_fn)
        model_toolkit_fn = "{}/{}".format(workdir, self.model_toolkit_fn)

        self._write_pb_str(infer_service_fn, self.infer_service_conf)
        self._write_pb_str(workflow_fn, self.workflow_conf)
        self._write_pb_str(resource_fn, self.resource_conf)
        self._write_pb_str(model_toolkit_fn, self.model_toolkit_conf)

M
MRXLT 已提交
436
    def port_is_available(self, port):
M
MRXLT 已提交
437 438
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
439
            result = sock.connect_ex(('0.0.0.0', port))
M
MRXLT 已提交
440 441 442 443 444
        if result != 0:
            return True
        else:
            return False

M
MRXLT 已提交
445 446 447
    def run_server(self):
        # just run server with system command
        # currently we do not load cube
M
MRXLT 已提交
448
        self.check_local_bin()
M
MRXLT 已提交
449 450
        if not self.use_local_bin:
            self.download_bin()
B
fix bug  
barrierye 已提交
451 452 453
            # wait for other process to download server bin
            while not os.path.exists(self.server_path):
                time.sleep(1)
M
MRXLT 已提交
454 455
        else:
            print("Use local bin : {}".format(self.bin_path))
M
MRXLT 已提交
456
        self.check_cuda()
M
MRXLT 已提交
457 458 459 460 461 462 463 464 465 466 467
        command = "{} " \
                  "-enable_model_toolkit " \
                  "-inferservice_path {} " \
                  "-inferservice_file {} " \
                  "-max_concurrency {} " \
                  "-num_threads {} " \
                  "-port {} " \
                  "-reload_interval_s {} " \
                  "-resource_path {} " \
                  "-resource_file {} " \
                  "-workflow_path {} " \
M
MRXLT 已提交
468 469
                  "-workflow_file {} " \
                  "-bthread_concurrency {} " \
M
MRXLT 已提交
470 471
                  "-gpuid {} " \
                  "-max_body_size {} ".format(
M
MRXLT 已提交
472 473 474 475 476 477 478 479 480 481
                      self.bin_path,
                      self.workdir,
                      self.infer_service_fn,
                      self.max_concurrency,
                      self.num_threads,
                      self.port,
                      self.reload_interval_s,
                      self.workdir,
                      self.resource_fn,
                      self.workdir,
M
MRXLT 已提交
482 483
                      self.workflow_fn,
                      self.num_threads,
M
MRXLT 已提交
484 485
                      self.gpuid,
                      self.max_body_size)
M
MRXLT 已提交
486 487
        print("Going to Run Comand")
        print(command)
488

M
MRXLT 已提交
489
        os.system(command)
B
barrierye 已提交
490 491 492 493


class MultiLangServerService(
        multi_lang_general_model_service_pb2_grpc.MultiLangGeneralModelService):
B
barrierye 已提交
494 495 496 497 498 499
    def __init__(self,
                 model_config_path,
                 is_multi_model,
                 endpoints,
                 timeout_ms=None):
        self.is_multi_model_ = is_multi_model
B
barrierye 已提交
500 501 502
        from paddle_serving_client import Client
        self._parse_model_config(model_config_path)
        self.bclient_ = Client()
B
barrierye 已提交
503 504
        if timeout_ms is not None:
            self.bclient_.set_rpc_timeout_ms(timeout_ms)
B
barrierye 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
        self.bclient_.load_client_config(
            "{}/serving_server_conf.prototxt".format(model_config_path))
        self.bclient_.connect(endpoints)

    def _parse_model_config(self, model_config_path):
        model_conf = m_config.GeneralModelConfig()
        f = open("{}/serving_server_conf.prototxt".format(model_config_path),
                 'r')
        model_conf = google.protobuf.text_format.Merge(
            str(f.read()), model_conf)
        self.feed_names_ = [var.alias_name for var in model_conf.feed_var]
        self.feed_types_ = {}
        self.feed_shapes_ = {}
        self.fetch_names_ = [var.alias_name for var in model_conf.fetch_var]
        self.fetch_types_ = {}
        self.lod_tensor_set_ = set()
        for i, var in enumerate(model_conf.feed_var):
            self.feed_types_[var.alias_name] = var.feed_type
            self.feed_shapes_[var.alias_name] = var.shape
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)
        for i, var in enumerate(model_conf.fetch_var):
            self.fetch_types_[var.alias_name] = var.fetch_type
            if var.is_lod_tensor:
                self.lod_tensor_set_.add(var.alias_name)

    def _flatten_list(self, nested_list):
        for item in nested_list:
            if isinstance(item, (list, tuple)):
                for sub_item in self._flatten_list(item):
                    yield sub_item
            else:
                yield item

    def _unpack_request(self, request):
        feed_names = list(request.feed_var_names)
        fetch_names = list(request.fetch_var_names)
B
barrierye 已提交
542
        is_python = request.is_python
B
barrierye 已提交
543 544 545 546
        feed_batch = []
        for feed_inst in request.insts:
            feed_dict = {}
            for idx, name in enumerate(feed_names):
B
barrierye 已提交
547
                var = feed_inst.tensor_array[idx]
B
barrierye 已提交
548 549
                v_type = self.feed_types_[name]
                data = None
B
barrierye 已提交
550 551 552 553 554 555 556
                if is_python:
                    if v_type == 0:
                        data = np.frombuffer(var.data, dtype="int64")
                    elif v_type == 1:
                        data = np.frombuffer(var.data, dtype="float32")
                    else:
                        raise Exception("error type.")
B
barrierye 已提交
557
                else:
B
barrierye 已提交
558 559 560 561 562 563 564
                    if v_type == 0:  # int64
                        data = np.array(list(var.int64_data), dtype="int64")
                    elif v_type == 1:  # float32
                        data = np.array(list(var.float_data), dtype="float32")
                    else:
                        raise Exception("error type.")
                data.shape = list(feed_inst.tensor_array[idx].shape)
B
barrierye 已提交
565 566
                feed_dict[name] = data
            feed_batch.append(feed_dict)
B
barrierye 已提交
567
        return feed_batch, fetch_names, is_python
B
barrierye 已提交
568

B
barrierye 已提交
569
    def _pack_resp_package(self, results, fetch_names, is_python, tag):
B
barrierye 已提交
570 571 572 573 574 575
        resp = multi_lang_general_model_service_pb2.Response()
        resp.tag = tag
        if results is None:
            resp.brpc_predict_error = True
            return
        resp.brpc_predict_error = False
B
barrierye 已提交
576 577 578 579 580 581 582 583 584 585
        if not self.is_multi_model_:
            results = {'general_infer_0': results}
        for model_name, model_result in results.items():
            model_output = multi_lang_general_model_service_pb2.ModelOutput()
            inst = multi_lang_general_model_service_pb2.FetchInst()
            for idx, name in enumerate(fetch_names):
                tensor = multi_lang_general_model_service_pb2.Tensor()
                v_type = self.fetch_types_[name]
                if is_python:
                    tensor.data = model_result[name].tobytes()
B
barrierye 已提交
586
                else:
B
barrierye 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
                    if v_type == 0:  # int64
                        tensor.int64_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
                    elif v_type == 1:  # float32
                        tensor.float_data.extend(model_result[name].reshape(-1)
                                                 .tolist())
                    else:
                        raise Exception("error type.")
                tensor.shape.extend(list(model_result[name].shape))
                if name in self.lod_tensor_set_:
                    tensor.lod.extend(model_result["{}.lod".format(name)]
                                      .tolist())
                inst.tensor_array.append(tensor)
            model_output.insts.append(inst)
            model_output.engine_name = model_name
            resp.outputs.append(model_output)
B
barrierye 已提交
603 604 605
        return resp

    def inference(self, request, context):
B
barrierye 已提交
606
        feed_dict, fetch_names, is_python = self._unpack_request(request)
B
barrierye 已提交
607 608
        data, tag = self.bclient_.predict(
            feed=feed_dict, fetch=fetch_names, need_variant_tag=True)
B
barrierye 已提交
609
        return self._pack_resp_package(data, fetch_names, is_python, tag)
B
barrierye 已提交
610 611 612


class MultiLangServer(object):
B
barrierye 已提交
613
    def __init__(self):
B
barrierye 已提交
614
        self.bserver_ = Server()
B
barrierye 已提交
615 616 617 618 619 620 621 622
        self.worker_num_ = 4
        self.body_size_ = 64 * 1024 * 1024
        self.concurrency_ = 100000
        self.bclient_timeout_ms_ = 2000
        self.is_multi_model_ = False  # for model ensemble

    def set_bclient_timeout_ms(self, timeout):
        self.bclient_timeout_ms_ = timeout
B
barrierye 已提交
623

B
barrierye 已提交
624
    def set_max_concurrency(self, concurrency):
B
barrierye 已提交
625
        self.concurrency_ = concurrency
B
barrierye 已提交
626 627 628
        self.bserver_.set_max_concurrency(concurrency)

    def set_num_threads(self, threads):
B
barrierye 已提交
629
        self.worker_num_ = threads
B
barrierye 已提交
630 631 632 633
        self.bserver_.set_num_threads(threads)

    def set_max_body_size(self, body_size):
        self.bserver_.set_max_body_size(body_size)
B
barrierye 已提交
634 635 636 637 638 639
        if body_size >= self.body_size_:
            self.body_size_ = body_size
        else:
            print(
                "max_body_size is less than default value, will use default value in service."
            )
B
barrierye 已提交
640 641 642 643 644 645 646

    def set_port(self, port):
        self.gport_ = port

    def set_reload_interval(self, interval):
        self.bserver_.set_reload_interval(interval)

B
barrierye 已提交
647 648 649
    def set_op_sequence(self, op_seq):
        self.bserver_.set_op_sequence(op_seq)

B
barrierye 已提交
650 651 652 653 654 655 656 657 658 659 660 661
    def set_op_graph(self, op_graph):
        self.bserver_.set_op_graph(op_graph)

    def set_memory_optimize(self, flag=False):
        self.bserver_.set_memory_optimize(flag)

    def set_ir_optimize(self, flag=False):
        self.bserver_.set_ir_optimize(flag)

    def set_gpuid(self, gpuid=0):
        self.bserver_.set_gpuid(gpuid)

B
barrierye 已提交
662
    def load_model_config(self, model_config_paths):
B
barrierye 已提交
663 664 665 666 667 668 669 670
        self.bserver_.load_model_config(model_config_paths)
        if isinstance(model_config_paths, dict):
            # print("You have specified multiple model paths, please ensure "
            #       "that the input and output of multiple models are the same.")
            self.model_config_path_ = list(model_config_paths.items())[0][1]
            self.is_multi_model_ = True
        else:
            self.model_config_path_ = model_config_paths
B
barrierye 已提交
671 672

    def prepare_server(self, workdir=None, port=9292, device="cpu"):
B
barrierye 已提交
673 674
        if not self._port_is_available(port):
            raise SystemExit("Prot {} is already used".format(port))
B
barrierye 已提交
675 676 677 678 679 680 681 682 683
        default_port = 12000
        self.port_list_ = []
        for i in range(1000):
            if default_port + i != port and self._port_is_available(default_port
                                                                    + i):
                self.port_list_.append(default_port + i)
                break
        self.bserver_.prepare_server(
            workdir=workdir, port=self.port_list_[0], device=device)
B
barrierye 已提交
684
        self.set_port(port)
B
barrierye 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697 698

    def _launch_brpc_service(self, bserver):
        bserver.run_server()

    def _port_is_available(self, port):
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
            sock.settimeout(2)
            result = sock.connect_ex(('0.0.0.0', port))
        return result != 0

    def run_server(self):
        p_bserver = Process(
            target=self._launch_brpc_service, args=(self.bserver_, ))
        p_bserver.start()
B
barrierye 已提交
699 700
        options = [('grpc.max_send_message_length', self.body_size_),
                   ('grpc.max_receive_message_length', self.body_size_)]
B
barrierye 已提交
701
        server = grpc.server(
B
barrierye 已提交
702 703 704
            futures.ThreadPoolExecutor(max_workers=self.worker_num_),
            options=options,
            maximum_concurrent_rpcs=self.concurrency_)
B
barrierye 已提交
705
        multi_lang_general_model_service_pb2_grpc.add_MultiLangGeneralModelServiceServicer_to_server(
B
barrierye 已提交
706 707 708 709 710
            MultiLangServerService(
                self.model_config_path_,
                self.is_multi_model_,
                ["0.0.0.0:{}".format(self.port_list_[0])],
                timeout_ms=self.bclient_timeout_ms_),
B
barrierye 已提交
711 712 713 714 715
            server)
        server.add_insecure_port('[::]:{}'.format(self.gport_))
        server.start()
        p_bserver.join()
        server.wait_for_termination()